A brief survey on de-bordering paradigms and its recent advances Pranjal Dutta National University of Singapore 2nd April, 2025 WACT @ Ruhr-Universität Bochum □ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define $$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n X_{i,\pi(i)}.$$ - Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\} \text{ such that } \pi \text{ is bijective } \}$. Define - $f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$ □ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\} \text{ such that } \pi \text{ is bijective } \}$. Define $$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$$ - \Box det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f). Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\} \text{ such that } \pi \text{ is bijective } \}$. Define $f_n := \det(X_n) = \sum_{\pi \in S} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$ □ det is *universal*, i.e. any polynomial $$f(\mathbf{x})$$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f). - \square E.g. $dc(x_1 \cdots x_n + y_1 \cdots y_n) = n$, since $$x_1 \cdots x_n + y_1 \cdots y_n = \det \begin{pmatrix} x_1 & y_1 & 0 & \dots & 0 \\ 0 & x_2 & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_n & 0 & \dots & 0 & x_n \end{pmatrix}$$ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\} \text{ such that } \pi \text{ is bijective } \}$. Define $f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$ - \Box det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f). - \square E.g. $dc(x_1 \cdots x_n + y_1 \cdots y_n) = n$, since $$x_1 \cdots x_n + y_1 \cdots y_n = \det \begin{pmatrix} x_1 & y_1 & 0 & \dots & 0 \\ 0 & x_2 & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_n & 0 & \dots & 0 & x_n \end{pmatrix}.$$ ullet VBP: The class VBP := $\{(f_n(x_1,\ldots,x_m))_n \mid m, \operatorname{dc}(f_n) = \operatorname{poly}(n)\}.$ size(f) = min size of the circuit computing f ``` VP = "easy to compute" [Valiant'79] The class VP := \{(f_n(x_1,...,x_m))_n \mid m, \text{size}(f_n), \text{deg}(f_n) = \text{poly}(n)\}. ``` #### VP = "easy to compute" [Valiant'79] The class $VP := \{(f_n(x_1, \dots, x_m))_n \mid m, \operatorname{size}(f_n), \deg(f_n) = \operatorname{poly}(n)\}.$ #### Examples: $$\succ f_n := x_1 \cdots x_n.$$ $$\succ f_n := x_1^n + \ldots + x_n^n.$$ $$ightharpoonup f_n := \sum_{S\subseteq [n], |S|=k} \prod_{j\in S} x_j.$$ #### VP = "easy to compute" [Valiant'79] The class $VP := \{(f_n(x_1, \dots, x_m))_n \mid m, \operatorname{size}(f_n), \deg(f_n) = \operatorname{poly}(n)\}.$ #### Examples: $$\succ f_n := x_1 \cdots x_n.$$ $$ightharpoonup f_n := X_1^n + \ldots + X_n^n.$$ $$\succ f_n := \sum_{S\subseteq [n], |S|=k} \prod_{j\in S} x_j.$$ $$ightharpoonup ext{size}(\det(X_n)) = O(n^4)$$ [Mahajan-Vinay'97]. #### VP = "easy to compute" [Valiant'79] The class $VP := \{(f_n(x_1, \dots, x_m))_n \mid m, \operatorname{size}(f_n), \deg(f_n) = \operatorname{poly}(n)\}.$ #### Examples: $$\succ f_n := x_1 \cdots x_n.$$ $$ightharpoonup f_n := X_1^n + \ldots + X_n^n.$$ $$\succ f_n := \sum_{S\subseteq [n], |S|=k} \prod_{j\in S} x_j.$$ - $ightharpoonup ext{size}(\det(X_n)) = O(n^4)$ [Mahajan-Vinay'97]. - ightharpoonup VBP \subseteq VP. \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. - \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - ☐ Candidate hard polynomial: $$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$ - \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - ☐ Candidate hard polynomial: $$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$ \square perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 . - \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - ☐ Candidate hard polynomial: $$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$ - \square perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 . - The minimum dimension of the matrix to compute f, is called the **permanental** complexity pc(f). ## Valiant's Conjecture ## VNP [Valiant 1979] The class $VNP := \{(f_n(x_1, \dots, x_m))_n \mid m, pc(f_n) = poly(n)\}.$ ## Valiant's Conjecture ## VNP [Valiant 1979] The class VNP := $$\{(f_n(x_1,\ldots,x_m))_n \mid m, pc(f_n) = poly(n)\}.$$ \square VBP \subseteq VP \subseteq VNP. ## Valiant's Conjecture #### VNP [Valiant 1979] The class VNP := $\{(f_n(x_1, ..., x_m))_n \mid m, pc(f_n) = poly(n)\}.$ \square VBP \subset VP \subset VNP. #### Valiant's Conjecture [Valiant 1979] $VNP \nsubseteq VBP$, $VNP \nsubseteq VP$. Equivalently, $dc(perm_n)$, $size(f_n) = n^{\omega(1)}$. ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - $ightharpoonup P/poly \neq NP/poly \implies VBP \neq VNP$ (over finite fields). - ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - $ightharpoonup P/poly \neq NP/poly \implies VBP \neq VNP$ (over finite fields). - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well. - □ P/poly = NP/poly \Longrightarrow PH = Σ_2 (i.e. Polynomial Hierarchy collapses) [Karp-Lipton 1980]. ## **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, $\mathsf{WR}(f)$, is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. ## **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. Example: $$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$. ## **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. Example: $$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$. \square For any homogeneous polynomial f, WR(f) is *finite*. #### **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. Example: $$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$. - \square For any homogeneous polynomial f, WR(f) is *finite*. - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$. ## Waring rank ### **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. Example: $$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$. - \square For any homogeneous polynomial f, WR(f) is finite. - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$. - ightharpoonup [Carlini-Catalisano-Geramita 2012] $WR(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1)$, where $e_1
:= \min_i e_i$. ## Waring rank ### **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. Example: $$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$. - \square For any homogeneous polynomial f, WR(f) is finite. - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$. - ightharpoonup [Carlini-Catalisano-Geramita 2012] $WR(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1), \text{ where } e_1 := \min_i e_i.$ - □ The class $VW := \{(f_n) \mid WR(f_n) = poly(n)\}.$ ## Waring rank #### **Waring Rank** Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$. Example: $$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$. - \square For any homogeneous polynomial f, WR(f) is *finite*. - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$. - ightharpoonup [Carlini-Catalisano-Geramita 2012] $WR(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1), \text{ where } e_1 := \min_i e_i.$ - □ The class $VW := \{(f_n) \mid WR(f_n) = poly(n)\}.$ \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on. \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on. ## **Border complexity [Bürgisser 2004]** Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is: $$\overline{\Gamma}(f) \ = \ \min \left\{ k \ : f \ = \ \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence} \, f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \ \leq \ k \, \right\}.$$ \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on. ## **Border complexity [Bürgisser 2004]** Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is: $$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$ \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise). $$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$ \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on. ## **Border complexity [Bürgisser 2004]** Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is: $$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$ \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise). $$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$ $\Box \overline{\Gamma}(f) \leq \Gamma(f).$ \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on. ## **Border complexity [Bürgisser 2004]** Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is: $$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$ \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise). $$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$ $$\square$$ $\overline{\Gamma}(f) \leq \Gamma(f)$. $[f_{\epsilon} = f]$ \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on. ## **Border complexity [Bürgisser 2004]** Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is: $$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$ \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise). $$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$ $$\square$$ $\overline{\Gamma}(f) \leq \Gamma(f)$. $[f_{\epsilon} = f]$ \square Example: WR(x^2y) ≤ 3 , because \square Example: $WR(x^2y) \le 3$, because $$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ \square Example: $WR(x^2y) \le 3$, because $$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ q □ Example: $WR(x^2y) \le 3$, because $$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ - \square Prove: WR(x^2y) = 3. - $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ □ Example: $WR(x^2y) \le 3$, because $$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ - $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h \text{ (coefficient-wise)}.$ q □ Example: $WR(x^2y) \le 3$, because $$x^2 y \; = \; \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \; .$$ - \square Prove: WR(x^2y) = 3. - $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h \text{ (coefficient-wise)}.$ - □ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3! □ Example: $WR(x^2y) \le 3$, because $$x^2 y \; = \; \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \; .$$ - \square Prove: WR(x^2y) = 3. - $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h \text{ (coefficient-wise)}.$ - □ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3! $$WR(h) \le 4 \quad WR(h) \le 3 \quad WR(h) \le 2WR(h) \le 1$$ $$x^2y$$ ## **Border Waring rank** The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms. ## **Border Waring rank** The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms. ## **Border Waring rank** The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms. \square $\overline{WR}(x^2y) = 2$, since, $$x^2y = \lim_{\epsilon \to 0} \left(\frac{x + \epsilon y}{(3\epsilon)^{1/3}} \right)^3 - \left(\frac{x}{(3\epsilon)^{1/3}} \right)^3.$$ ## **Border Waring rank** The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms. \square $\overline{WR}(x^2y) = 2$, since, $$x^2y = \lim_{\epsilon \to 0} \left(\frac{x + \epsilon y}{(3\epsilon)^{1/3}} \right)^3 - \left(\frac{x}{(3\epsilon)^{1/3}} \right)^3.$$ ☐ We do not understand the gap between the Waring rank and border Waring rank. \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$. - \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$. - \Box trace(X_n^3) is a homogeneous degree 3 polynomial in n^2 variables. - \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$. - \square trace(X_n^3) is a homogeneous degree 3 polynomial in n^2 variables. - \square Let ω be the matrix multiplication exponent: $\omega = \inf\{\tau : \text{two } n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ scalar multiplications}\}.$ - \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$. - \Box trace(X_n^3) is a homogeneous degree 3 polynomial in n^2 variables. - \Box Let ω be the matrix multiplication exponent: $\omega = \inf\{\tau : \text{two } n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ scalar multiplications}\}.$ ☐ [Chiantini-Hauenstein-Ikenmeyer-Landsberg-Ottaviani'18] $$\omega = \lim_{n \to \infty} \log_n \overline{WR}(\operatorname{trace}(X_n^3))$$. □ For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$. - □ For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$. - ☐ [Kraft'85] Zariski closure and Euclidean closure coincide: $$\{f \in S^d\mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^\mathbb{C} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^\mathsf{Zar} \ .$$ - \Box For a class C, wrt Γ -complexity, one can
define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$. - ☐ [Kraft'85] Zariski closure and Euclidean closure coincide: $$\{f\in S^d\mathbb{C}^n\mid \overline{\mathrm{dc}}(f)\leq k\}\ =\ \overline{\{f\in S^d\mathbb{C}^n\mid \mathrm{dc}(f)\leq k\}}^\mathbb{C}\ =\ \overline{\{f\in S^d\mathbb{C}^n\mid \mathrm{dc}(f)\leq k\}}^\mathsf{Zar}\ .$$ □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21] - \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$. - ☐ [Kraft'85] Zariski closure and Euclidean closure coincide: $$\{f \in S^d\mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathbb{C}} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathsf{Zar}} \ .$$ - □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21] - □ Take $C \in \{VW, VBP, VP, VNP, \dots\}$. - \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$. - ☐ [Kraft'85] Zariski closure and Euclidean closure coincide: $$\{f \in S^d \mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d \mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathbb{C}} \ = \ \overline{\{f \in S^d \mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathsf{Zar}} \ .$$ - □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21] - □ Take $C \in \{VW, VBP, VP, VNP, \dots\}$. - ☐ Major open questions: - \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$. - ☐ [Kraft'85] Zariski closure and Euclidean closure coincide: $$\{f \in S^d\mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathbb{C}} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathsf{Zar}} \ .$$ - □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21] - \square Take $C \in \{VW, VBP, VP, VNP, \dots\}$. - ☐ Major open questions: $$\overline{VW} \stackrel{?}{=} VW$$, $\overline{VBP} \stackrel{?}{=} VBP$, $\overline{VP} \stackrel{?}{=} VP$, $\overline{VNP} \stackrel{?}{=} VNP$. Waring rank vs border Waring rank ## Waring rank vs border Waring rank □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15]. - □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - □ WR(f) ≤ 1/ $k \cdot {d+k \choose k}$ [Blekherman-Teitler'15]. - □ When $\overline{\mathsf{WR}}(f) \le 5$, then $\mathsf{WR}(f) \le 4d$ [Landsberg-Teitler'10, Ballico'19]. - □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - □ WR(f) ≤ 1/ $k \cdot {d+k \choose k}$ [Blekherman-Teitler'15]. - □ When $\overline{\mathsf{WR}}(f) \le 5$, then $\mathsf{WR}(f) \le 4d$ [Landsberg-Teitler'10, Ballico'19]. #### **Debordering border Waring rank** Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then, - (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24] - (ii) $WR(f) \le d \cdot k^{O(\sqrt{k})}$. [Shpilka'25] - **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15]. - □ When $\overline{\mathsf{WR}}(f) \leq 5$, then $\mathsf{WR}(f) \leq 4d$ [Landsberg-Teitler'10, Ballico'19]. #### **Debordering border Waring rank** Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then, - (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24] - (ii) WR(f) $\leq d \cdot k^{O(\sqrt{k})}$. [Shpilka'25] **Remark.** When $k = O(\log d)$, $WR(f) \le poly(d)$. - **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15]. - □ When $\overline{\mathsf{WR}}(f) \leq 5$, then $\mathsf{WR}(f) \leq 4d$ [Landsberg-Teitler'10, Ballico'19]. #### **Debordering border Waring rank** Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then, - (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24] - (ii) WR(f) $\leq d \cdot k^{O(\sqrt{k})}$. [Shpilka'25] **Remark.** When $k = O(\log d)$, $WR(f) \le poly(d)$. **Open Question**: (i) Can we improve the above to poly(k, d)? - □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$? - \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15]. - □ When $\overline{\mathsf{WR}}(f) \le 5$, then $\mathsf{WR}(f) \le 4d$ [Landsberg-Teitler'10, Ballico'19]. #### **Debordering border Waring rank** Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then, - (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24] - (ii) WR(f) $\leq d \cdot k^{O(\sqrt{k})}$. [Shpilka'25] **Remark.** When $k = O(\log d)$, $WR(f) \le poly(d)$. **Open Question**: (i) Can we improve the above to poly(k, d)? (ii) Show that $\overline{WR}(x_1 \cdots x_n) = 2^{n-1}$ [We know $2^n/\sqrt{n}$, via partial-derivatives]. \square We may assume f can be written in k variables. - \square We may assume f can be written in k variables. - \square We may assume that $\deg(f) \ge k$. - \square We may assume f can be written in k variables. - \square We may assume that $\deg(f) \ge k$. - □ Generalized additive decomposition [DGIJL'24]: If $\overline{WR}(f) = k$, then there exists k_1, \dots, k_m , such that $k = k_1 + \dots + k_m$, and $$f = \sum_{i=1}^m \ell_i^{D-k_i+1} \cdot g_i ,$$ where $\deg(g_i) = k_i - 1$, and $\overline{\mathsf{WR}}(\ell_i^{D-k_i+1} \cdot g_i) \le k_i$. - \square We may assume f can be written in k variables. - \square We may assume that $\deg(f) \ge k$. - □ Generalized additive decomposition [DGIJL'24]: If $\overline{WR}(f) = k$, then there exists k_1, \dots, k_m , such that $k = k_1 + \dots + k_m$, and $$f = \sum_{i=1}^m \ell_i^{D-k_i+1} \cdot g_i ,$$ where $$\deg(g_i) = k_i - 1$$, and $\overline{\mathsf{WR}}(\ell_i^{D-k_i+1} \cdot g_i) \le k_i$. \square WR(g_i) can be bounded! - \square We may assume f can be written in k variables. - \square We may assume that $\deg(f) \ge k$. - □ Generalized additive decomposition [DGIJL'24]: If $\overline{WR}(f) = k$, then there exists k_1, \dots, k_m , such that $k = k_1 + \dots + k_m$, and $$f = \sum_{i=1}^m \ell_i^{D-k_i+1} \cdot g_i ,$$ where $$\deg(g_i) = k_i - 1$$, and $\overline{\mathsf{WR}}(\ell_i^{D-k_i+1} \cdot g_i) \le k_i$. - \square WR(g_i) can be bounded! - □ **Diagonalization trick** [Shpilka'25]: After suitable linear transformation and perturbation, x_i does not appear in $g_1, ..., g_{i-1}$. $\ \ \ \square \ \ Let \ \Gamma \in \{\text{WR}, \text{dc}, \text{size}, \text{pc}\}.$ - \square Let $\Gamma \in \{WR, dc, size, pc\}$. - □ If $\overline{\Gamma}(f) \le k$, then one can assume that $\Gamma(\epsilon^r f + \epsilon^{r+1} \cdot f') \le k$, for some $f' \in \mathbb{C}[[\epsilon]][\mathbf{x}], r \ge 0$. - □ Let Γ ∈ {WR, dc, size, pc}. - □ If $\overline{\Gamma}(f) \le k$, then one can assume that $\Gamma(\epsilon^r f + \epsilon^{r+1} \cdot f') \le k$, for some $f' \in \mathbb{C}[[\epsilon]][\mathbf{x}], r \ge 0$. - \Box $q \le 2 \cdot 2^{k^2}$ [Bürgisser 2004, 2020]; based on [Lehmkuhl-Lickteig'89]. - □ Let Γ ∈ {WR, dc, size, pc}. - □ If $\overline{\Gamma}(f) \le k$, then one can assume that $\Gamma(\epsilon^r f + \epsilon^{r+1} \cdot f') \le k$, for some $f' \in \mathbb{C}[[\epsilon]][\mathbf{x}], r \ge 0$. - $\Box q \le 2 \cdot 2^{k^2}$ [Bürgisser 2004, 2020]; based on [Lehmkuhl-Lickteig'89]. - ☐ **Open Question**. Can this be improved? # **New Lower Bound Questions** #### **New Lower Bound Questions** ## **Strengthening Valiant's Conjecture [Milind-Sohoni 2001]** $VNP \not\subset \overline{VBP}$, $VNP \not\subset \overline{VP}$.
Equivalently, $\overline{dc}(perm_n)$, $\overline{size}(perm_n) = n^{\omega(1)}$. \square Every homogeneous degree **d** polynomial **f** can be written as a product $$f = \left(\ell_{1,1,1} \; \ell_{1,2,1} \; \cdots \; \ell_{1,k,1} \right) \begin{pmatrix} \ell_{1,1,2} \; \cdots \; \ell_{1,k,2} \\ \vdots \; \ddots \; \vdots \\ \ell_{k,1,2} \; \cdots \; \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \; \cdots \; \ell_{1,k,d-1} \\ \vdots \; \ddots \; \vdots \\ \ell_{k,1,d-1} \; \cdots \; \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$ \square Every homogeneous degree **d** polynomial **f** can be written as a product $$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$ of matrices whose entries are homogeneous linear polynomials. \square width w(f) := the smallest possible such k. \square Every homogeneous degree **d** polynomial **f** can be written as a product $$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$ - \square width $\mathbf{w}(\mathbf{f}) :=$ the smallest possible such \mathbf{k} . - \square $w(f) \le WR(f)$. [Folklore] \square Every homogeneous degree **d** polynomial **f** can be written as a product $$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$ - \square width w(f) := the smallest possible such k. - \square $w(f) \le WR(f)$. [Folklore] - \square $w(f) \le WR(f)$ [Bläser-Dörfler-Ikenmeyer'21]. \square Every homogeneous degree **d** polynomial **f** can be written as a product $$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$ - \square width w(f) := the smallest possible such k. - \square $w(f) \le WR(f)$. [Folklore] - \square $w(f) \le WR(f)$ [Bläser-Dörfler-Ikenmeyer'21]. - \square WR(f) \leq $w(f) \cdot (nd + d + 1)$ [Nisan'91 + Saxena'08]. \square Every homogeneous degree **d** polynomial **f** can be written as a product $$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$ - \square width $\mathbf{w}(f) :=$ the smallest possible such \mathbf{k} . - \square $w(f) \le WR(f)$. [Folklore] - \square $w(f) \le \overline{WR}(f)$ [Bläser-Dörfler-Ikenmeyer'21]. - \square WR(f) \leq $w(f) \cdot (nd + d + 1)$ [Nisan'91 + Saxena'08]. - \square $\overline{VW} \subseteq VBP$. ☐ Formula = Circuits, but with "tree"-structure. - ☐ Formula = Circuits, but with "tree"-structure. - \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92]. - ☐ Formula = Circuits, but with "tree"-structure. - \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92]. - \square $x_1x_2 + \cdots + x_{15}x_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11] - ☐ Formula = Circuits, but with "tree"-structure. - \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92]. - \square $x_1x_2 + \cdots + x_{15}x_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11] - □ width-2 ABPs are not complete model. - ☐ Formula = Circuits, but with "tree"-structure. - \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92]. - \square $x_1x_2 + \cdots + x_{15}x_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11] - □ width-2 ABPs are not complete model. ☐ Formula = Circuits, but with "tree"-structure. \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92]. \square $X_1X_2 + \cdots + X_{15}X_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11] □ width-2 ABPs are not complete model. \square width-2 ABP \equiv Formula, over \mathbb{F} where char(\mathbb{F}) \neq 2 [Bringmann-Ikenmeyer-Zuiddam'18]. ☐ Border width-2 ABPs are complete over *any* field! [Dutta-Ikenmeyer-Komarath-Mittal-Nanoti-Thakkar'24] $$\label{eq:note: VBP} \square \ \ \mathrm{Note:} \ \ \mathsf{VBP} := \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \textstyle \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)} \}.$$ - $\label{eq:note: VBP} \quad \square \quad \text{Note: VBP} := \{ (f_n)_n \mid f_n = \det(A_0 + \textstyle\sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\text{poly}(n) \times \text{poly}(n)} \}.$ - □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. - $\label{eq:note: VBP} \begin{tabular}{ll} \blacksquare & \text{Note: VBP} := \{(f_n)_n \mid f_n = \det(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}\}. \end{tabular}$ - □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. - ☐ Consider: $$\mathsf{VBP}_{[1]} \; := \; \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}, \mathsf{rank}(A_i) = 1 \} \; .$$ - \square Note: VBP := $\{(f_n)_n \mid f_n = \det(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\text{poly}(n) \times \text{poly}(n)}\}$. - □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. - ☐ Consider: $$\mathsf{VBP}_{[1]} \; := \; \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}, \mathsf{rank}(A_i) = 1 \} \; .$$ $$\square$$ $\overline{\mathsf{VBP}_{[1]}} = \mathsf{VBP}_{[1]}$. - □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$. - ☐ Consider: $$\mathsf{VBP}_{[1]} \; := \; \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}, \mathsf{rank}(A_i) = 1 \} \; .$$ $$\square$$ $\overline{\mathsf{VBP}_{[1]}} = \mathsf{VBP}_{[1]}$. Open Question: $\overline{\mathsf{VBP}_{[2]}} \stackrel{?}{=} \mathsf{VBP}_{[2]}$. \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{iT}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\label{eq:continuous} \ \square \ \ \mathrm{Let} \ U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), \ V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - $\label{eq:det_signal} \ \ \, \det(\textstyle\sum_{i=1}^n A_i x_i) = \textstyle\sum_{S\subseteq [n], |S|=r} \ \, \det(U_S) \det(V_S) \prod_{j\in S} x_j.$ - \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), \ V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*. - □ Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - $\label{eq:det_signal} \ \ \, \ \, \det(\sum_{i=1}^n A_i x_i) = \sum_{S \subseteq [n], |S| = r} \ \, \det(U_S) \det(V_S) \prod_{j \in S} x_j.$ - □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*. - \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety) - \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*. - \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety) - \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that $$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$ - \square
Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - \square Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*. - \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety) - \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that $$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$ Then, $$\lim_{\epsilon \to 0} \det(\sum_{i=1}^m A_i x_i) = \lim_{\epsilon \to 0} \sum_{S \subseteq [n], |S| = r} \det(U_S) \det(V_S) \boldsymbol{x}_S$$ - \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$ - $\label{eq:det_signal} \ \ \, \ \, \det(\sum_{i=1}^n A_i x_i) = \sum_{S \subseteq [n], |S| = r} \ \, \det(U_S) \det(V_S) \prod_{j \in S} x_j.$ - □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*. - \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety) - \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that $$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$ Then, $$\lim_{\epsilon \to 0} \det(\sum_{i=1}^{n} A_i x_i) = \lim_{\epsilon \to 0} \sum_{S \subseteq [n], |S| = r} \det(U_S) \det(V_S) \mathbf{x}_S$$ $$= \sum_{S \subseteq [n], |S| = r} \left(\lim_{\epsilon \to 0} \det(U_S) \det(V_S) \right) \mathbf{x}_S$$ - □ Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$. - \square Let $U = (\mathbf{u}^1, \dots, \mathbf{u}^n), V = (\mathbf{v}^1, \dots, \mathbf{v}^n).$ - \square Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*. - \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety) - \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that $$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$ Then, $$\lim_{\epsilon \to 0} \det(\sum_{i=1}^{n} A_i x_i) = \lim_{\epsilon \to 0} \sum_{S \subseteq [n], |S| = r} \det(U_S) \det(V_S) \mathbf{x}_S$$ $$= \sum_{S \subseteq [n], |S| = r} \left(\lim_{\epsilon \to 0} \det(U_S) \det(V_S) \right) \mathbf{x}_S$$ $$= \sum_{S \subseteq [n], |S| = r} \det(U_S') \det(V_S') \mathbf{x}_S = \det(\sum_{i=1}^{n} B_i x_i)$$ #### **Chow Rank** Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$. ** These are homogeneous depth-3 circuits $(\Sigma^{[k]}\Pi\Sigma)$. #### **Chow Rank** Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$. - ** These are homogeneous depth-3 circuits $(\Sigma^{[k]}\Pi\Sigma)$. - \square *Border Chow rank* $\overline{CR}(f)$ is defined analogously: $$\overline{\mathsf{CR}}(f) := \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \le k \right\}.$$ #### **Chow Rank** Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$. - ** These are homogeneous depth-3 circuits ($\Sigma^{[k]}\Pi\Sigma$). - \square *Border Chow rank* $\overline{CR}(f)$ is defined analogously: $$\overline{\mathsf{CR}}(f) \ := \ \min \left\{ k \ : f \ = \ \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \ \le \ k \right\}.$$ \square Trivially $CR(f) \le WR(f)$, $\overline{CR}(f) \le \overline{WR}(f)$. #### **Chow Rank** Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$. - ** These are homogeneous depth-3 circuits ($\Sigma^{[k]}\Pi\Sigma$). - \square *Border Chow rank* $\overline{CR}(f)$ is defined analogously: $$\overline{\mathsf{CR}}(f) := \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \le k \right\}.$$ - □ Trivially $CR(f) \le WR(f)$, $\overline{CR}(f) \le \overline{WR}(f)$. - □ Exponential-gap between WR(f) and CR(f) (same in border): WR($x_1 \cdots x_n + y_1 \cdots y_n$) = 2^n , while CR($x_1 \cdots x_n + y_1 \cdots y_n$) = 2! □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{j=1}^{d_i} \ell_{ij}$. - □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{j=1}^k \prod_{j=1}^{d_j} \ell_{ij}$. - \Box We can define $\overline{\mathsf{CR}^{\mathsf{aff}}}(f)$. - □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{j=1}^{d_i} \ell_{ij}$. - \Box We can define $\overline{\mathsf{CR}^{\mathsf{aff}}}(f)$. - \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{j=1}^{k} \prod_{j=1}^{d_j} \ell_{jj}$. - \square We can define $CR^{aff}(f)$. - \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ [Kumar'20] Universality: For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathsf{CR}^{\mathsf{aff}}(f) \leq 2$, equivalently f has $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuit [although size $\approx \overline{\mathsf{WR}}(f)$ can be large]. - □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{j=1}^{d_i} \ell_{ij}$. - \square We can define $CR^{aff}(f)$. - \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ [Kumar'20] Universality: For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathsf{CR}^{\mathsf{aff}}(f) \leq 2$, equivalently f has $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuit [although size $\approx \overline{\mathsf{WR}}(f)$ can be large]. - □ How are CR^{aff} and CR^{aff} related, when $d_i \leq poly(nd)$? - □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{i=1}^{d_i} \ell_{ij}$. - \square We can define $CR^{aff}(f)$. - \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ [Kumar'20] Universality: For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathsf{CR}^{\mathsf{aff}}(f) \leq 2$, equivalently f has $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuit [although size $\approx \overline{\mathsf{WR}}(f)$ can be large]. - □ How are CR^{aff} and CR^{aff} related, when $d_i \leq poly(nd)$? i.e. How are $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\Sigma^{[k]}\Pi\Sigma$ related? Fix $k \ge 2$ to be a constant. □ [Folklore] $$CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$$. - □ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$. - \Box det_n cannot be computed by a $\Sigma^{[k]}$ ΠΣ-circuit, regardless of how large the size is! - □ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$. - \Box det_n cannot be computed by a $\Sigma^{[k]}$ ΠΣ-circuit, regardless of how large the size is! - \square poly-size $\Sigma^{[k]}\Pi\Sigma \subseteq \mathsf{VBP}$. - □ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$. - \Box det_n cannot be computed by a $\Sigma^{[k]}$ ΠΣ-circuit, regardless of how large the size is! - \square poly-size $\Sigma^{[k]}\Pi\Sigma \subsetneq \mathsf{VBP}$. - ☐ Does this hold for border? ## **De-bordering border Chow rank** # Upper bound for CR [Dutta-Dwivedi-Saxena'21]. Let $$f \in S^d \mathbb{C}^n$$, s.t. $\overline{\mathsf{CR}}(f) = k$. Then, $$dc(f) \leq (ndk)^{exp(k)}$$. ## **De-bordering border Chow rank** ## Upper bound for CR [Dutta-Dwivedi-Saxena'21]. Let $$f \in S^d \mathbb{C}^n$$, s.t. $\overline{\mathsf{CR}}(f) = k$. Then, $$dc(f) \leq (ndk)^{exp(k)}$$. **Corollary.** For any constant $k \ge 1$, $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \mathsf{VBP}$. ## **De-bordering border Chow rank** ## **Upper bound for CR [Dutta-Dwivedi-Saxena'21].** Let $$f \in S^d \mathbb{C}^n$$, s.t. $\overline{\mathsf{CR}}(f) = k$. Then, $$dc(f) \leq (ndk)^{exp(k)}$$. **Corollary.** For any constant $k \ge 1$, $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \mathsf{VBP}$. **100-ft above Idea for** $\overline{\Sigma^{[2]}\Pi\Sigma}$: If $\lim_{\epsilon\to 0}(T_1+T_2)=f$, where T_i are products of linear forms, then $\left(\frac{T_1}{T_2}\right)'$ has "nice" deboder-friendly expression. \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \square Ambitious goal: Can
we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$? - \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$? ### **Hierarchy Theorem [Dutta-Saxena 2022]** Fix any constant $k \ge 1$. There is an explicit n-variate and < n degree polynomial f such that f can be computed by an O(n)-size $\Sigma^{\lfloor k+1 \rfloor} \Pi \Sigma$ circuit such that if f is computed by a $\Sigma^{\lfloor k \rfloor} \Pi \Sigma$ circuit, then it requires size $2^{\Omega(n)}$. Conclusion \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$. - \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$. - □ What about $\overline{\Sigma^{[2]}}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$. - \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$. - □ What about $\overline{\Sigma^{[2]}}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$. - \square $\overline{\mathsf{WR}}(f) \le k$, then degree of ϵ in the presentation is at most k-1. - \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$. - □ What about $\Sigma^{[2]}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$. - \square WR(f) $\leq k$, then degree of ϵ in the presentation is at most k-1. - □ Easiest Question: $\overline{\text{dc}}(\text{perm}_n) = n^{\omega(1)}$, equivalently VNP $\not\subset \overline{\text{VBP}}$! - \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$. - □ What about $\Sigma^{[2]}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$. - \square $\overline{\mathsf{WR}}(f) \le k$, then degree of ϵ in the presentation is at most k-1. - □ Easiest Question: $\overline{dc}(perm_n) = n^{\omega(1)}$, equivalently VNP $\not\subset \overline{VBP}$! Thank you! Questions?