A brief survey on de-bordering paradigms and its recent advances

Pranjal Dutta National University of Singapore

2nd April, 2025 WACT @ Ruhr-Universität Bochum

□ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\}$ such that π is bijective $\}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n X_{i,\pi(i)}.$$

- Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\} \text{ such that } \pi \text{ is bijective } \}$. Define
 - $f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$

□ det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, ..., n\} \longrightarrow \{1, ..., n\} \text{ such that } \pi \text{ is bijective } \}$. Define

$$f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$$

- \Box det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f).

Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\} \text{ such that } \pi \text{ is bijective } \}$. Define $f_n := \det(X_n) = \sum_{\pi \in S} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$

□ det is *universal*, i.e. any polynomial
$$f(\mathbf{x})$$
 can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .

- \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f).
- \square E.g. $dc(x_1 \cdots x_n + y_1 \cdots y_n) = n$, since

$$x_1 \cdots x_n + y_1 \cdots y_n = \det \begin{pmatrix} x_1 & y_1 & 0 & \dots & 0 \\ 0 & x_2 & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_n & 0 & \dots & 0 & x_n \end{pmatrix}$$

Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\} \text{ such that } \pi \text{ is bijective } \}$. Define $f_n := \det(X_n) = \sum_{\pi \in S_n} (-1)^{\operatorname{sgn}(\pi)} \prod_{i=1}^n x_{i,\pi(i)}.$

- \Box det is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 .
- \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f).
- \square E.g. $dc(x_1 \cdots x_n + y_1 \cdots y_n) = n$, since

$$x_1 \cdots x_n + y_1 \cdots y_n = \det \begin{pmatrix} x_1 & y_1 & 0 & \dots & 0 \\ 0 & x_2 & y_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y_n & 0 & \dots & 0 & x_n \end{pmatrix}.$$

ullet VBP: The class VBP := $\{(f_n(x_1,\ldots,x_m))_n \mid m, \operatorname{dc}(f_n) = \operatorname{poly}(n)\}.$

size(f) = min size of the circuit computing f


```
VP = "easy to compute" [Valiant'79]
The class VP := \{(f_n(x_1,...,x_m))_n \mid m, \text{size}(f_n), \text{deg}(f_n) = \text{poly}(n)\}.
```

VP = "easy to compute" [Valiant'79]

The class $VP := \{(f_n(x_1, \dots, x_m))_n \mid m, \operatorname{size}(f_n), \deg(f_n) = \operatorname{poly}(n)\}.$

Examples:

$$\succ f_n := x_1 \cdots x_n.$$

$$\succ f_n := x_1^n + \ldots + x_n^n.$$

$$ightharpoonup f_n := \sum_{S\subseteq [n], |S|=k} \prod_{j\in S} x_j.$$

VP = "easy to compute" [Valiant'79]

The class $VP := \{(f_n(x_1, \dots, x_m))_n \mid m, \operatorname{size}(f_n), \deg(f_n) = \operatorname{poly}(n)\}.$

Examples:

$$\succ f_n := x_1 \cdots x_n.$$

$$ightharpoonup f_n := X_1^n + \ldots + X_n^n.$$

$$\succ f_n := \sum_{S\subseteq [n], |S|=k} \prod_{j\in S} x_j.$$

$$ightharpoonup ext{size}(\det(X_n)) = O(n^4)$$
 [Mahajan-Vinay'97].

VP = "easy to compute" [Valiant'79]

The class $VP := \{(f_n(x_1, \dots, x_m))_n \mid m, \operatorname{size}(f_n), \deg(f_n) = \operatorname{poly}(n)\}.$

Examples:

$$\succ f_n := x_1 \cdots x_n.$$

$$ightharpoonup f_n := X_1^n + \ldots + X_n^n.$$

$$\succ f_n := \sum_{S\subseteq [n], |S|=k} \prod_{j\in S} x_j.$$

- $ightharpoonup ext{size}(\det(X_n)) = O(n^4)$ [Mahajan-Vinay'97].
- ightharpoonup VBP \subseteq VP.

 \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$?

- \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11].

- \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!

- \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- ☐ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$

- \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- ☐ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$

 \square perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .

- \square Are there hard polynomial families $(f_n)_n$ such that i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- ☐ Candidate hard polynomial:

$$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$

- \square perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 .
- The minimum dimension of the matrix to compute f, is called the **permanental** complexity pc(f).

Valiant's Conjecture

VNP [Valiant 1979]

The class $VNP := \{(f_n(x_1, \dots, x_m))_n \mid m, pc(f_n) = poly(n)\}.$

Valiant's Conjecture

VNP [Valiant 1979]

The class VNP :=
$$\{(f_n(x_1,\ldots,x_m))_n \mid m, pc(f_n) = poly(n)\}.$$

 \square VBP \subseteq VP \subseteq VNP.

Valiant's Conjecture

VNP [Valiant 1979]

The class VNP := $\{(f_n(x_1, ..., x_m))_n \mid m, pc(f_n) = poly(n)\}.$

 \square VBP \subset VP \subset VNP.

Valiant's Conjecture [Valiant 1979]

 $VNP \nsubseteq VBP$, $VNP \nsubseteq VP$. Equivalently, $dc(perm_n)$, $size(f_n) = n^{\omega(1)}$.

☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:

- ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - $ightharpoonup P/poly \neq NP/poly \implies VBP \neq VNP$ (over finite fields).

- ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]:
 - $ightharpoonup P/poly \neq NP/poly \implies VBP \neq VNP$ (over finite fields).
 - Assuming GRH (Generalized Riemann hypothesis), the results hold over C as well.
- □ P/poly = NP/poly \Longrightarrow PH = Σ_2 (i.e. Polynomial Hierarchy collapses) [Karp-Lipton 1980].

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, $\mathsf{WR}(f)$, is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Example:
$$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$
.

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Example:
$$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$
.

 \square For any homogeneous polynomial f, WR(f) is *finite*.

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Example:
$$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$
.

- \square For any homogeneous polynomial f, WR(f) is *finite*.
 - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$.

Waring rank

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Example:
$$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$
.

- \square For any homogeneous polynomial f, WR(f) is finite.
 - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$.
 - ightharpoonup [Carlini-Catalisano-Geramita 2012] $WR(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1)$, where $e_1 := \min_i e_i$.

Waring rank

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Example:
$$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$
.

- \square For any homogeneous polynomial f, WR(f) is finite.
 - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$.
 - ightharpoonup [Carlini-Catalisano-Geramita 2012] $WR(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1), \text{ where } e_1 := \min_i e_i.$
- □ The class $VW := \{(f_n) \mid WR(f_n) = poly(n)\}.$

Waring rank

Waring Rank

Let $h \in S^d \mathbb{C}^n$. Waring rank of f, WR(f), is the smallest k such that f can be written as a sum of d-th power of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \ell_i^d$.

Example:
$$xy = \left(\frac{x+y}{2}\right)^2 + \left(\frac{x-y}{2\iota}\right)^2$$
.

- \square For any homogeneous polynomial f, WR(f) is *finite*.
 - $ightharpoonup WR(\cdot)$ is sub-additive: $WR(g+h) \leq WR(g) + WR(h)$.
 - ightharpoonup [Carlini-Catalisano-Geramita 2012] $WR(x_1^{e_1} \cdots x_n^{e_n}) = (e_2 + 1) \cdots (e_n + 1), \text{ where } e_1 := \min_i e_i.$
- □ The class $VW := \{(f_n) \mid WR(f_n) = poly(n)\}.$

 \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on.

 \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) \ = \ \min \left\{ k \ : f \ = \ \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence} \, f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \ \leq \ k \, \right\}.$$

 \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$

 \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise).

$$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$

 \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$

 \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise).

$$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$

 $\Box \overline{\Gamma}(f) \leq \Gamma(f).$

 \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$

 \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise).

$$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$

$$\square$$
 $\overline{\Gamma}(f) \leq \Gamma(f)$. $[f_{\epsilon} = f]$

 \square Let Γ be any sensible measure. It can be dc, size, pc, WR and so on.

Border complexity [Bürgisser 2004]

Let $f \in \mathbb{C}[x_1, \dots, x_n]$, and Γ is a complexity measure. Then, the border- Γ complexity of f is:

$$\overline{\Gamma}(f) = \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \Gamma_{\mathbb{C}(\epsilon)}(f_{\epsilon}) \leq k \right\}.$$

 \square $\lim_{\epsilon \to 0} f_{\epsilon} = f$ (coefficient-wise).

$$\lim_{\epsilon \to 0} f_{\epsilon} = f \text{ (coefficient-wise)}.$$

$$\square$$
 $\overline{\Gamma}(f) \leq \Gamma(f)$. $[f_{\epsilon} = f]$

 \square Example: WR(x^2y) ≤ 3 , because

 \square Example: $WR(x^2y) \le 3$, because

$$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$

 \square Example: $WR(x^2y) \le 3$, because

$$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$

q

□ Example: $WR(x^2y) \le 3$, because

$$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$

- \square Prove: WR(x^2y) = 3.
- $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$

□ Example: $WR(x^2y) \le 3$, because

$$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$

- $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h \text{ (coefficient-wise)}.$

q

□ Example: $WR(x^2y) \le 3$, because

$$x^2 y \; = \; \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \; .$$

- \square Prove: WR(x^2y) = 3.
- $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h \text{ (coefficient-wise)}.$
- □ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!

□ Example: $WR(x^2y) \le 3$, because

$$x^2 y \; = \; \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \; .$$

- \square Prove: WR(x^2y) = 3.
- $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ $= x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h \text{ (coefficient-wise)}.$
- □ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3!

$$WR(h) \le 4 \quad WR(h) \le 3 \quad WR(h) \le 2WR(h) \le 1$$

$$x^2y$$

Border Waring rank

The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

Border Waring rank

The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

Border Waring rank

The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

 \square $\overline{WR}(x^2y) = 2$, since,

$$x^2y = \lim_{\epsilon \to 0} \left(\frac{x + \epsilon y}{(3\epsilon)^{1/3}} \right)^3 - \left(\frac{x}{(3\epsilon)^{1/3}} \right)^3.$$

Border Waring rank

The border Waring rank $\overline{\mathsf{WR}}(f)$, of a d-form f is defined as the smallest k such that $f = \lim_{\epsilon \to 0} \sum_{i \in [k]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$, are homogeneous linear forms.

 \square $\overline{WR}(x^2y) = 2$, since,

$$x^2y = \lim_{\epsilon \to 0} \left(\frac{x + \epsilon y}{(3\epsilon)^{1/3}} \right)^3 - \left(\frac{x}{(3\epsilon)^{1/3}} \right)^3.$$

☐ We do not understand the gap between the Waring rank and border Waring rank.

 \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$.

- \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$.
- \Box trace(X_n^3) is a homogeneous degree 3 polynomial in n^2 variables.

- \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$.
- \square trace(X_n^3) is a homogeneous degree 3 polynomial in n^2 variables.
- \square Let ω be the matrix multiplication exponent:

 $\omega = \inf\{\tau : \text{two } n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ scalar multiplications}\}.$

- \square Consider $n \times n$ symbolic matrix X_n with entries $x_{i,j}$.
- \Box trace(X_n^3) is a homogeneous degree 3 polynomial in n^2 variables.
- \Box Let ω be the matrix multiplication exponent:

 $\omega = \inf\{\tau : \text{two } n \times n \text{ matrices can be multiplied using } O(n^{\tau}) \text{ scalar multiplications}\}.$

☐ [Chiantini-Hauenstein-Ikenmeyer-Landsberg-Ottaviani'18]

$$\omega = \lim_{n \to \infty} \log_n \overline{WR}(\operatorname{trace}(X_n^3))$$
.

□ For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.

- □ For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.
- ☐ [Kraft'85] Zariski closure and Euclidean closure coincide:

$$\{f \in S^d\mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^\mathbb{C} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^\mathsf{Zar} \ .$$

- \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.
- ☐ [Kraft'85] Zariski closure and Euclidean closure coincide:

$$\{f\in S^d\mathbb{C}^n\mid \overline{\mathrm{dc}}(f)\leq k\}\ =\ \overline{\{f\in S^d\mathbb{C}^n\mid \mathrm{dc}(f)\leq k\}}^\mathbb{C}\ =\ \overline{\{f\in S^d\mathbb{C}^n\mid \mathrm{dc}(f)\leq k\}}^\mathsf{Zar}\ .$$

□ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21]

- \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.
- ☐ [Kraft'85] Zariski closure and Euclidean closure coincide:

$$\{f \in S^d\mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathbb{C}} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathsf{Zar}} \ .$$

- □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21]
- □ Take $C \in \{VW, VBP, VP, VNP, \dots\}$.

- \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.
- ☐ [Kraft'85] Zariski closure and Euclidean closure coincide:

$$\{f \in S^d \mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d \mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathbb{C}} \ = \ \overline{\{f \in S^d \mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathsf{Zar}} \ .$$

- □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21]
- □ Take $C \in \{VW, VBP, VP, VNP, \dots\}$.
- ☐ Major open questions:

- \Box For a class C, wrt Γ -complexity, one can define \overline{C} , wrt $\overline{\Gamma}$ -complexity. E.g. the class $\overline{\mathsf{VBP}}$ is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $\overline{\mathsf{dc}}(f_n)$.
- ☐ [Kraft'85] Zariski closure and Euclidean closure coincide:

$$\{f \in S^d\mathbb{C}^n \mid \overline{\mathsf{dc}}(f) \leq k\} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathbb{C}} \ = \ \overline{\{f \in S^d\mathbb{C}^n \mid \mathsf{dc}(f) \leq k\}}^{\mathsf{Zar}} \ .$$

- □ De-bordering: Given a 'nice' class C, can we de-border \overline{C} ? i.e. find another 'nice' class \mathcal{D} such that $\overline{C} \subseteq \mathcal{D}$? [Dutta-Dwivedi-Saxena'21]
- \square Take $C \in \{VW, VBP, VP, VNP, \dots\}$.
- ☐ Major open questions:

$$\overline{VW} \stackrel{?}{=} VW$$
, $\overline{VBP} \stackrel{?}{=} VBP$, $\overline{VP} \stackrel{?}{=} VP$, $\overline{VNP} \stackrel{?}{=} VNP$.

Waring rank vs border Waring rank

Waring rank vs border Waring rank

□ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?

- **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?
- \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15].

- □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?
- □ WR(f) ≤ 1/ $k \cdot {d+k \choose k}$ [Blekherman-Teitler'15].
- □ When $\overline{\mathsf{WR}}(f) \le 5$, then $\mathsf{WR}(f) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

- □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?
- □ WR(f) ≤ 1/ $k \cdot {d+k \choose k}$ [Blekherman-Teitler'15].
- □ When $\overline{\mathsf{WR}}(f) \le 5$, then $\mathsf{WR}(f) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

Debordering border Waring rank

Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then,

- (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24]
- (ii) $WR(f) \le d \cdot k^{O(\sqrt{k})}$. [Shpilka'25]

- **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?
- \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15].
- □ When $\overline{\mathsf{WR}}(f) \leq 5$, then $\mathsf{WR}(f) \leq 4d$ [Landsberg-Teitler'10, Ballico'19].

Debordering border Waring rank

Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then,

- (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24]
- (ii) WR(f) $\leq d \cdot k^{O(\sqrt{k})}$. [Shpilka'25]

Remark. When $k = O(\log d)$, $WR(f) \le poly(d)$.

- **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?
- \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15].
- □ When $\overline{\mathsf{WR}}(f) \leq 5$, then $\mathsf{WR}(f) \leq 4d$ [Landsberg-Teitler'10, Ballico'19].

Debordering border Waring rank

Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then,

- (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24]
- (ii) WR(f) $\leq d \cdot k^{O(\sqrt{k})}$. [Shpilka'25]

Remark. When $k = O(\log d)$, $WR(f) \le poly(d)$.

Open Question: (i) Can we improve the above to poly(k, d)?

- □ **Question**. Given $f \in \mathbb{C}[x]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for some parameter k. What can we say about $\mathsf{WR}(f)$?
- \square WR $(f) \le 1/k \cdot {d+k \choose k}$ [Blekherman-Teitler'15].
- □ When $\overline{\mathsf{WR}}(f) \le 5$, then $\mathsf{WR}(f) \le 4d$ [Landsberg-Teitler'10, Ballico'19].

Debordering border Waring rank

Let $f \in \mathbb{C}[\mathbf{x}]$, of degree f, such that $\overline{\mathsf{WR}}(f) = k$, for k < d. Then,

- (i) $WR(f) \le d \cdot 4^k$. [Dutta-Gesmundo-Ikenmeyer-Jindal-Lysikov'24]
- (ii) WR(f) $\leq d \cdot k^{O(\sqrt{k})}$. [Shpilka'25]

Remark. When $k = O(\log d)$, $WR(f) \le poly(d)$.

Open Question: (i) Can we improve the above to poly(k, d)?

(ii) Show that $\overline{WR}(x_1 \cdots x_n) = 2^{n-1}$ [We know $2^n/\sqrt{n}$, via partial-derivatives].

 \square We may assume f can be written in k variables.

- \square We may assume f can be written in k variables.
- \square We may assume that $\deg(f) \ge k$.

- \square We may assume f can be written in k variables.
- \square We may assume that $\deg(f) \ge k$.
- □ Generalized additive decomposition [DGIJL'24]: If $\overline{WR}(f) = k$, then there exists k_1, \dots, k_m , such that $k = k_1 + \dots + k_m$, and

$$f = \sum_{i=1}^m \ell_i^{D-k_i+1} \cdot g_i ,$$

where $\deg(g_i) = k_i - 1$, and $\overline{\mathsf{WR}}(\ell_i^{D-k_i+1} \cdot g_i) \le k_i$.

- \square We may assume f can be written in k variables.
- \square We may assume that $\deg(f) \ge k$.
- □ Generalized additive decomposition [DGIJL'24]: If $\overline{WR}(f) = k$, then there exists k_1, \dots, k_m , such that $k = k_1 + \dots + k_m$, and

$$f = \sum_{i=1}^m \ell_i^{D-k_i+1} \cdot g_i ,$$

where
$$\deg(g_i) = k_i - 1$$
, and $\overline{\mathsf{WR}}(\ell_i^{D-k_i+1} \cdot g_i) \le k_i$.

 \square WR(g_i) can be bounded!

- \square We may assume f can be written in k variables.
- \square We may assume that $\deg(f) \ge k$.
- □ Generalized additive decomposition [DGIJL'24]: If $\overline{WR}(f) = k$, then there exists k_1, \dots, k_m , such that $k = k_1 + \dots + k_m$, and

$$f = \sum_{i=1}^m \ell_i^{D-k_i+1} \cdot g_i ,$$

where
$$\deg(g_i) = k_i - 1$$
, and $\overline{\mathsf{WR}}(\ell_i^{D-k_i+1} \cdot g_i) \le k_i$.

- \square WR(g_i) can be bounded!
- □ **Diagonalization trick** [Shpilka'25]: After suitable linear transformation and perturbation, x_i does not appear in $g_1, ..., g_{i-1}$.

 $\ \ \ \square \ \ Let \ \Gamma \in \{\text{WR}, \text{dc}, \text{size}, \text{pc}\}.$

- \square Let $\Gamma \in \{WR, dc, size, pc\}$.
- □ If $\overline{\Gamma}(f) \le k$, then one can assume that $\Gamma(\epsilon^r f + \epsilon^{r+1} \cdot f') \le k$, for some $f' \in \mathbb{C}[[\epsilon]][\mathbf{x}], r \ge 0$.

- □ Let Γ ∈ {WR, dc, size, pc}.
- □ If $\overline{\Gamma}(f) \le k$, then one can assume that $\Gamma(\epsilon^r f + \epsilon^{r+1} \cdot f') \le k$, for some $f' \in \mathbb{C}[[\epsilon]][\mathbf{x}], r \ge 0$.
- \Box $q \le 2 \cdot 2^{k^2}$ [Bürgisser 2004, 2020]; based on [Lehmkuhl-Lickteig'89].

- □ Let Γ ∈ {WR, dc, size, pc}.
- □ If $\overline{\Gamma}(f) \le k$, then one can assume that $\Gamma(\epsilon^r f + \epsilon^{r+1} \cdot f') \le k$, for some $f' \in \mathbb{C}[[\epsilon]][\mathbf{x}], r \ge 0$.
- $\Box q \le 2 \cdot 2^{k^2}$ [Bürgisser 2004, 2020]; based on [Lehmkuhl-Lickteig'89].
- ☐ **Open Question**. Can this be improved?

New Lower Bound Questions

New Lower Bound Questions

Strengthening Valiant's Conjecture [Milind-Sohoni 2001]

 $VNP \not\subset \overline{VBP}$, $VNP \not\subset \overline{VP}$. Equivalently, $\overline{dc}(perm_n)$, $\overline{size}(perm_n) = n^{\omega(1)}$.

 \square Every homogeneous degree **d** polynomial **f** can be written as a product

$$f = \left(\ell_{1,1,1} \; \ell_{1,2,1} \; \cdots \; \ell_{1,k,1} \right) \begin{pmatrix} \ell_{1,1,2} \; \cdots \; \ell_{1,k,2} \\ \vdots \; \ddots \; \vdots \\ \ell_{k,1,2} \; \cdots \; \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \; \cdots \; \ell_{1,k,d-1} \\ \vdots \; \ddots \; \vdots \\ \ell_{k,1,d-1} \; \cdots \; \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$

 \square Every homogeneous degree **d** polynomial **f** can be written as a product

$$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$

of matrices whose entries are homogeneous linear polynomials.

 \square width w(f) := the smallest possible such k.

 \square Every homogeneous degree **d** polynomial **f** can be written as a product

$$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$

- \square width $\mathbf{w}(\mathbf{f}) :=$ the smallest possible such \mathbf{k} .
- \square $w(f) \le WR(f)$. [Folklore]

 \square Every homogeneous degree **d** polynomial **f** can be written as a product

$$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$

- \square width w(f) := the smallest possible such k.
- \square $w(f) \le WR(f)$. [Folklore]
- \square $w(f) \le WR(f)$ [Bläser-Dörfler-Ikenmeyer'21].

 \square Every homogeneous degree **d** polynomial **f** can be written as a product

$$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$

- \square width w(f) := the smallest possible such k.
- \square $w(f) \le WR(f)$. [Folklore]
- \square $w(f) \le WR(f)$ [Bläser-Dörfler-Ikenmeyer'21].
- \square WR(f) \leq $w(f) \cdot (nd + d + 1)$ [Nisan'91 + Saxena'08].

 \square Every homogeneous degree **d** polynomial **f** can be written as a product

$$f = \left(\, \ell_{1,1,1} \, \, \ell_{1,2,1} \, \cdots \, \ell_{1,k,1} \, \right) \begin{pmatrix} \ell_{1,1,2} \, \cdots \, \, \ell_{1,k,2} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,2} \, \cdots \, \, \ell_{k,k,2} \end{pmatrix} \cdots \begin{pmatrix} \ell_{1,1,d-1} \, \cdots \, \, \ell_{1,k,d-1} \\ \vdots \, \ddots \, \vdots \\ \ell_{k,1,d-1} \, \cdots \, \, \ell_{k,k,d-1} \end{pmatrix} \begin{pmatrix} \ell_{1,1,d} \\ \vdots \\ \ell_{k,1,d} \end{pmatrix}$$

- \square width $\mathbf{w}(f) :=$ the smallest possible such \mathbf{k} .
- \square $w(f) \le WR(f)$. [Folklore]
- \square $w(f) \le \overline{WR}(f)$ [Bläser-Dörfler-Ikenmeyer'21].
- \square WR(f) \leq $w(f) \cdot (nd + d + 1)$ [Nisan'91 + Saxena'08].
- \square $\overline{VW} \subseteq VBP$.

☐ Formula = Circuits, but with "tree"-structure.

- ☐ Formula = Circuits, but with "tree"-structure.
- \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92].

- ☐ Formula = Circuits, but with "tree"-structure.
- \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92].
- \square $x_1x_2 + \cdots + x_{15}x_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11]

- ☐ Formula = Circuits, but with "tree"-structure.
- \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92].
- \square $x_1x_2 + \cdots + x_{15}x_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11]
- □ width-2 ABPs are not complete model.

- ☐ Formula = Circuits, but with "tree"-structure.
- \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92].
- \square $x_1x_2 + \cdots + x_{15}x_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11]
- □ width-2 ABPs are not complete model.

☐ Formula = Circuits, but with "tree"-structure. \square width-3 ABP \equiv Formula [Ben-Or & Cleve'92]. \square $X_1X_2 + \cdots + X_{15}X_{16}$ cannot be computed by width-2 ABPs! [Allender-Wang'11] □ width-2 ABPs are not complete model. \square width-2 ABP \equiv Formula, over \mathbb{F} where char(\mathbb{F}) \neq 2 [Bringmann-Ikenmeyer-Zuiddam'18]. ☐ Border width-2 ABPs are complete over *any* field! [Dutta-Ikenmeyer-Komarath-Mittal-Nanoti-Thakkar'24]

$$\label{eq:note: VBP} \square \ \ \mathrm{Note:} \ \ \mathsf{VBP} := \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \textstyle \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)} \}.$$

- $\label{eq:note: VBP} \quad \square \quad \text{Note: VBP} := \{ (f_n)_n \mid f_n = \det(A_0 + \textstyle\sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\text{poly}(n) \times \text{poly}(n)} \}.$
- □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$.

- $\label{eq:note: VBP} \begin{tabular}{ll} \blacksquare & \text{Note: VBP} := \{(f_n)_n \mid f_n = \det(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}\}. \end{tabular}$
- □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$.
- ☐ Consider:

$$\mathsf{VBP}_{[1]} \; := \; \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}, \mathsf{rank}(A_i) = 1 \} \; .$$

- \square Note: VBP := $\{(f_n)_n \mid f_n = \det(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\text{poly}(n) \times \text{poly}(n)}\}$.
- □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$.
- ☐ Consider:

$$\mathsf{VBP}_{[1]} \; := \; \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}, \mathsf{rank}(A_i) = 1 \} \; .$$

$$\square$$
 $\overline{\mathsf{VBP}_{[1]}} = \mathsf{VBP}_{[1]}$.

- □ Not clear: $\overline{\mathsf{VBP}} \stackrel{?}{=} \mathsf{VBP}$.
- ☐ Consider:

$$\mathsf{VBP}_{[1]} \; := \; \{ (f_n)_n \mid f_n = \mathsf{det}(A_0 + \sum_{i=1}^n A_i x_i), A_i \in \mathbb{F}^{\mathsf{poly}(n) \times \mathsf{poly}(n)}, \mathsf{rank}(A_i) = 1 \} \; .$$

$$\square$$
 $\overline{\mathsf{VBP}_{[1]}} = \mathsf{VBP}_{[1]}$.

Open Question: $\overline{\mathsf{VBP}_{[2]}} \stackrel{?}{=} \mathsf{VBP}_{[2]}$.

 \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{iT}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.

- \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\label{eq:continuous} \ \square \ \ \mathrm{Let} \ U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), \ V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$

- \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$
- $\label{eq:det_signal} \ \ \, \det(\textstyle\sum_{i=1}^n A_i x_i) = \textstyle\sum_{S\subseteq [n], |S|=r} \ \, \det(U_S) \det(V_S) \prod_{j\in S} x_j.$

- \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), \ V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$
- □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*.

- □ Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$
- $\label{eq:det_signal} \ \ \, \ \, \det(\sum_{i=1}^n A_i x_i) = \sum_{S \subseteq [n], |S| = r} \ \, \det(U_S) \det(V_S) \prod_{j \in S} x_j.$
- □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*.
- \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety)

- \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$
- □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*.
- \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety)
- \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that

$$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$

- \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$
- \square Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*.
- \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety)
- \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that

$$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$

Then,

$$\lim_{\epsilon \to 0} \det(\sum_{i=1}^m A_i x_i) = \lim_{\epsilon \to 0} \sum_{S \subseteq [n], |S| = r} \det(U_S) \det(V_S) \boldsymbol{x}_S$$

- \square Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- $\Box \text{ Let } U = (\mathbf{u}^1, \cdots, \mathbf{u}^n), V = (\mathbf{v}^1, \cdots, \mathbf{v}^n).$
- $\label{eq:det_signal} \ \ \, \ \, \det(\sum_{i=1}^n A_i x_i) = \sum_{S \subseteq [n], |S| = r} \ \, \det(U_S) \det(V_S) \prod_{j \in S} x_j.$
- □ Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*.
- \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety)
- \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that

$$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$

Then,

$$\lim_{\epsilon \to 0} \det(\sum_{i=1}^{n} A_i x_i) = \lim_{\epsilon \to 0} \sum_{S \subseteq [n], |S| = r} \det(U_S) \det(V_S) \mathbf{x}_S$$
$$= \sum_{S \subseteq [n], |S| = r} \left(\lim_{\epsilon \to 0} \det(U_S) \det(V_S) \right) \mathbf{x}_S$$

- □ Consider $A_0 = 0$ for simplicity. Note: $A_i = \mathbf{u}^i \cdot \mathbf{v}^{i^T}$, for $\mathbf{u}^i, \mathbf{v}^i \in \mathbb{F}^r$.
- \square Let $U = (\mathbf{u}^1, \dots, \mathbf{u}^n), V = (\mathbf{v}^1, \dots, \mathbf{v}^n).$
- \square Want to prove: $(U, V) \mapsto (\det(U_S) \times \det(V_S))_S$ is *closed*.
- \square Plücker coordinates: $U \mapsto (U_S)_S$ is *closed*. (Grassmannian variety)
- \square Main Idea: For $U, V \in \mathbb{F}(\epsilon)^{r \times n}$, there are $U', V' \in \mathbb{F}^{r \times n}$, such that

$$\lim_{\epsilon \to 0} \left(\det(U_S) \cdot \det(V_S) \right) = \det(U_S') \cdot \det(V_S') \;.$$

Then,

$$\lim_{\epsilon \to 0} \det(\sum_{i=1}^{n} A_i x_i) = \lim_{\epsilon \to 0} \sum_{S \subseteq [n], |S| = r} \det(U_S) \det(V_S) \mathbf{x}_S$$

$$= \sum_{S \subseteq [n], |S| = r} \left(\lim_{\epsilon \to 0} \det(U_S) \det(V_S) \right) \mathbf{x}_S$$

$$= \sum_{S \subseteq [n], |S| = r} \det(U_S') \det(V_S') \mathbf{x}_S = \det(\sum_{i=1}^{n} B_i x_i)$$

Chow Rank

Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$.

** These are homogeneous depth-3 circuits $(\Sigma^{[k]}\Pi\Sigma)$.

Chow Rank

Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$.

- ** These are homogeneous depth-3 circuits $(\Sigma^{[k]}\Pi\Sigma)$.
 - \square *Border Chow rank* $\overline{CR}(f)$ is defined analogously:

$$\overline{\mathsf{CR}}(f) := \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \le k \right\}.$$

Chow Rank

Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$.

- ** These are homogeneous depth-3 circuits ($\Sigma^{[k]}\Pi\Sigma$).
 - \square *Border Chow rank* $\overline{CR}(f)$ is defined analogously:

$$\overline{\mathsf{CR}}(f) \ := \ \min \left\{ k \ : f \ = \ \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \ \le \ k \right\}.$$

 \square Trivially $CR(f) \le WR(f)$, $\overline{CR}(f) \le \overline{WR}(f)$.

Chow Rank

Let $f \in S^d\mathbb{C}^n$. Chow rank of f, $\mathsf{CR}(f)$, is the smallest k such that f can be written as a sum of d-product of linear forms ℓ_i , i.e. $f = \sum_{i=1}^k \prod_{j=1}^d \ell_{i,j}$.

- ** These are homogeneous depth-3 circuits ($\Sigma^{[k]}\Pi\Sigma$).
 - \square *Border Chow rank* $\overline{CR}(f)$ is defined analogously:

$$\overline{\mathsf{CR}}(f) := \min \left\{ k : f = \lim_{\epsilon \to 0} f_{\epsilon}, \text{ for a sequence } f_{\epsilon} \text{ with } \mathsf{CR}(f_{\epsilon}) \le k \right\}.$$

- □ Trivially $CR(f) \le WR(f)$, $\overline{CR}(f) \le \overline{WR}(f)$.
- □ Exponential-gap between WR(f) and CR(f) (same in border): WR($x_1 \cdots x_n + y_1 \cdots y_n$) = 2^n , while CR($x_1 \cdots x_n + y_1 \cdots y_n$) = 2!

□ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{j=1}^{d_i} \ell_{ij}$.

- □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{j=1}^k \prod_{j=1}^{d_j} \ell_{ij}$.
- \Box We can define $\overline{\mathsf{CR}^{\mathsf{aff}}}(f)$.

- □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{j=1}^{d_i} \ell_{ij}$.
- \Box We can define $\overline{\mathsf{CR}^{\mathsf{aff}}}(f)$.
- \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$.

- □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{j=1}^{k} \prod_{j=1}^{d_j} \ell_{jj}$.
- \square We can define $CR^{aff}(f)$.
- \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ [Kumar'20] Universality: For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathsf{CR}^{\mathsf{aff}}(f) \leq 2$, equivalently f has $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuit [although size $\approx \overline{\mathsf{WR}}(f)$ can be large].

- □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{j=1}^{d_i} \ell_{ij}$.
- \square We can define $CR^{aff}(f)$.
- \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ [Kumar'20] Universality: For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathsf{CR}^{\mathsf{aff}}(f) \leq 2$, equivalently f has $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuit [although size $\approx \overline{\mathsf{WR}}(f)$ can be large].
- □ How are CR^{aff} and CR^{aff} related, when $d_i \leq poly(nd)$?

- □ One can define the *affine Chow rank* $\mathsf{CR}^{\mathsf{aff}}(f)$, is when we allow affine linear polynomials, i.e., $f = \sum_{i=1}^k \prod_{i=1}^{d_i} \ell_{ij}$.
- \square We can define $CR^{aff}(f)$.
- \Box CR^{aff}(f) = k, is interchangeable with f having a *depth-3 circuit* with top fan-in k, denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ [Kumar'20] Universality: For any $f \in \mathbb{C}[x_1, ..., x_n]$, we have $\mathsf{CR}^{\mathsf{aff}}(f) \leq 2$, equivalently f has $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuit [although size $\approx \overline{\mathsf{WR}}(f)$ can be large].
- □ How are CR^{aff} and CR^{aff} related, when $d_i \leq poly(nd)$? i.e. How are $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\Sigma^{[k]}\Pi\Sigma$ related?

Fix $k \ge 2$ to be a constant.

□ [Folklore]
$$CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$$
.

- □ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.
- \Box det_n cannot be computed by a $\Sigma^{[k]}$ ΠΣ-circuit, regardless of how large the size is!

- □ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.
- \Box det_n cannot be computed by a $\Sigma^{[k]}$ ΠΣ-circuit, regardless of how large the size is!
- \square poly-size $\Sigma^{[k]}\Pi\Sigma \subseteq \mathsf{VBP}$.

- □ [Folklore] $CR^{aff}(f) = k \implies dc(f) \le poly(k, d)$.
- \Box det_n cannot be computed by a $\Sigma^{[k]}$ ΠΣ-circuit, regardless of how large the size is!
- \square poly-size $\Sigma^{[k]}\Pi\Sigma \subsetneq \mathsf{VBP}$.
- ☐ Does this hold for border?

De-bordering border Chow rank

Upper bound for CR [Dutta-Dwivedi-Saxena'21].

Let
$$f \in S^d \mathbb{C}^n$$
, s.t. $\overline{\mathsf{CR}}(f) = k$. Then,

$$dc(f) \leq (ndk)^{exp(k)}$$
.

De-bordering border Chow rank

Upper bound for CR [Dutta-Dwivedi-Saxena'21].

Let
$$f \in S^d \mathbb{C}^n$$
, s.t. $\overline{\mathsf{CR}}(f) = k$. Then,

$$dc(f) \leq (ndk)^{exp(k)}$$
.

Corollary. For any constant $k \ge 1$, $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \mathsf{VBP}$.

De-bordering border Chow rank

Upper bound for CR [Dutta-Dwivedi-Saxena'21].

Let
$$f \in S^d \mathbb{C}^n$$
, s.t. $\overline{\mathsf{CR}}(f) = k$. Then,

$$dc(f) \leq (ndk)^{exp(k)}$$
.

Corollary. For any constant $k \ge 1$, $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \mathsf{VBP}$.

100-ft above Idea for $\overline{\Sigma^{[2]}\Pi\Sigma}$: If $\lim_{\epsilon\to 0}(T_1+T_2)=f$, where T_i are products of linear forms, then $\left(\frac{T_1}{T_2}\right)'$ has "nice" deboder-friendly expression.

 \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?

- \Box Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?

Hierarchy Theorem [Dutta-Saxena 2022]

Fix any constant $k \ge 1$. There is an explicit n-variate and < n degree polynomial f such that f can be computed by an O(n)-size $\Sigma^{\lfloor k+1 \rfloor} \Pi \Sigma$ circuit such that if f is computed by a $\Sigma^{\lfloor k \rfloor} \Pi \Sigma$ circuit, then it requires size $2^{\Omega(n)}$.

Conclusion

 \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$.

- \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$.
- □ What about $\overline{\Sigma^{[2]}}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$.

- \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$.
- □ What about $\overline{\Sigma^{[2]}}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$.
- \square $\overline{\mathsf{WR}}(f) \le k$, then degree of ϵ in the presentation is at most k-1.

- \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$.
- □ What about $\Sigma^{[2]}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$.
- \square WR(f) $\leq k$, then degree of ϵ in the presentation is at most k-1.
- □ Easiest Question: $\overline{\text{dc}}(\text{perm}_n) = n^{\omega(1)}$, equivalently VNP $\not\subset \overline{\text{VBP}}$!

- \square $\overline{\mathsf{CR}}(f) \le k$, then $\mathsf{dc}(f) \le \mathsf{poly}(kd)$, equivalently, is $\overline{\Sigma\Pi\Sigma} \subset \mathsf{VBP}$.
- □ What about $\Sigma^{[2]}\Pi\Sigma\Pi \subseteq \mathsf{VBP}$? They compute $\lim_{\epsilon \to 0} (f_1 \cdots f_t + g_1 \cdots g_t)$, where f_i, g_i are sparse over $\mathbb{C}(\epsilon)$.
- \square $\overline{\mathsf{WR}}(f) \le k$, then degree of ϵ in the presentation is at most k-1.
- □ Easiest Question: $\overline{dc}(perm_n) = n^{\omega(1)}$, equivalently VNP $\not\subset \overline{VBP}$!

Thank you! Questions?