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The determinant polynomial

O Let Xp = [X; j]1<jj<n be an x n matrix of distinct variables X; ;. Let

Spi={n | n:{1,....,n} — {1,...,n} such that r is bijective }. Define
n
fn = det(Xp) = Z (—1)sgn(:r) nxi,n(i) .
neS, =1

Q det is universal, i.e. any polynomial f(X) can be computed as a determinant of a
square matrix whose entries are polynomials of degree < 1.

Q The minimum dimension of the matrix to compute f, is called the
determinantal complexity dc(f).

Q E.g.dc(Xq---Xn+Yyq---Y¥Yn) =N, since
X1 W 0 0
0 Xo Yo ... 0
X1...Xn+y1...yn:det ) ) )
n 0 ... 0 xp

Q VBP: The class VBP := {(fn(X1,....Xm))n | m,dc(fp) = poly(n)}.
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VP = “easy to compute” [Valiant’79]
The class VP = {(fn(X1 5000 ,Xm))n | m, SiZe(fn)s deg(fn) = poly(n)}

Examples:
> fn = X1 < Xn.
> fp o= X[+ x]

> fn = Z 1_[X/'.
Sc[n].|S|=kjeS

> size(det(Xp)) = O(n*) [Mahajan-Vinay’97].

> VBP c VP.
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‘Hard’ polynomials?

O Are there hard polynomial families (fy)n such that i.e. size(fp) = n@ (12

O A random polynomial with 0-1 coefficient is hard [Hrubes-Yehudayoff
ToC 11]. Challenge: Find an explicit one!

U Candidate hard polynomial:

n
perm(Xp) = Z l_lxi,n(i)'

eSS, i=1
Q perm is universal, i.e. any polynomial f(X) can be computed as a permanent of
a square matrix whose entries are polynomials of degree < 1.

Q The minimum dimension of the matrix to compute f, is called the permanental
complexity pc(f).
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VNP
The class VNP := {(fh(X1,...,Xm))n | m,pc(fp) = poly(n)}.

Q VBP c VP c VNP.

Valiant’s Conjecture

VNP ¢ VBP, VNP ¢ VP. Equivalently, dc(perm,,), size(fp) = n@ (1),
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Connections to Boolean circuit complexity

O Separating algebraic classes are “easier” than separating classes in Boolean
complexity [Biirgisser 1998]:

> P/poly # NP/poly = VBP # VNP (over finite fields).

> Assuming GRH (Generalized Riemann hypothesis), the results hold over C
as well.

Q P/poly = NP/poly = PH = X5 (i.e. Polynomial Hierarchy collapses)
[Karp-Lipton 1980].
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Approximation helps

0 Example: WR(x2y) < 3, because

1
3

2

1 1
ey = oo xwy)® - g =¥ gyt

Q Prove: WR(x2y) = 3.

0 Lethe = 5= ((x+ ey)3 —x3)

2 0 2. .
= X2y +exy? + %ys 3 x2y = h (coeflicient-wise).

A Note: WR(h¢) < 2, for any fixed non-zero €. But WR(h) = 3!

WR(h) < 4 (WR(h) <3 @WR(h) <

x2y
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Border Waring rank

The border Waring rank W(f), of a d-form f is defined as the smallest k such that
f=lim._o Yielk] fld, where ¢; € F(e)[x], are homogeneous linear forms.

0 WR(x?y) = 2, since,

3 3
2 . X +ey X
= I - .
xy sTO((Se)”S) ((36)1/3)

U We do not understand the gap between the Waring rank and border Waring rank.
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Border Waring Rank and Matrix Multiplication

O Consider n x n symbolic matrix Xp with entries X; ;.
Qa trace(X,?) is a homogeneous degree 3 polynomial in n? variables.
Q Let w be the matrix multiplication exponent:

w = inf{r : two n X N matrices can be multiplied using O(n") scalar multiplications}.

Q [Chiantini-Hauenstein-lkenmeyer-Landsberg-Ottaviani’ 18]

w = lim log, WR(trace(X2)) .
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U For a class C, wrt I'-complexity, one can define C, wrt T-complexity. E.g. the
class VBP is defined as the set of all sequences of polynomials (fp)n with
polynomially bounded dc(fp).

O [Kraft’85] Zariski closure and Euclidean closure coincide:

d~n | 3~ _ e c e Zar
{f € S“C" | dc(f) <k} = {f € SIC" | dc(f) <k} = {feSIC"|dc(f) <k} .

0 De-bordering: Given a ‘nice’ class C, can we de-border C? i.e. find another
“nice’ class D such that C € D? [Dutta-Dwivedi-Saxena’21]

Q Take C € {VW,VBP,VP,VNP,---}.

O Major open questions:

VW < vw,VBP £ VBP, VP £ VP, VNP < VNP.
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QO Question. Given f € C[x], of degree f, such that m(f) = k, for some
parameter k. What can we say about WR(f)?

Q WR(f) < 1/k - (d;k) [Blekherman-Teitler’15].
O When W(f) < 5, then WR(f) < 4d [Landsberg-Teitler’ 10, Ballico’19].

Debordering border Waring rank

Let f € C[X], of degree f, such that WR(f) = k, for k < d. Then,

(i) WR(f) < d-4k. [Dutta-Gesmundo-Tkenmeyer-Jindal-Lysikov’24]
(i) WR() < d-kOWVK) . [Shpilka25]

Remark. When k = O(logd), WR(f) < poly(d).

Open Question: (i) Can we improve the above to poly(k, d)?

(ii) Show that W(M <o Xp) = 21=1" [We know 2" /+/n, via partial-derivatives].
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O We may assume that deg(f) > k.

O Generalized additive decomposition [DGIJL'24]: If W(f) = K, then there
exists Ky, -+, Km, such that Kk = ky + - - - + km, and

(I.D—k,‘+1 . gi ,

O

1l
=n

I
T, D—ki+1
where deg(g;) = kj — 1, and WR({; -g;) < k.
O WR(gj) can be bounded!

O Diagonalization trick [Shpilka'25]: After suitable linear transformation and
perturbation, X; does not appear in gy, ...,gj_1.-
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Q LetI" € {WR,dc,size, pc}.

Q IfT(f) < k, then one can assume that T'(e"f + €1 - f/) < k, for some
" e C[lell[x],r > 0.

Ug<2- ok? [Biirgisser 2004, 2020]; based on [Lehmkuhl-Lickteig’89].

O Open Question. Can this be improved?
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Strengthening Valiant’s Conjecture [Milind-Sohoni 2001]
VNP ¢ VBP, VNP ¢ VP. Equivalently, dc(perm,,), size(perm,,) = n@(1).



ABP and Waring rank

Q Every homogeneous degree d polynomial f can be written as a product

b2 - Oke Oad-1 - Ckd-1\[C11.d
f=0ta1tiz1 lik)

bz o ke Cead-1 - ekd-1) \lkid

of matrices whose entries are homogeneous linear polynomials.



ABP and Waring rank

Q Every homogeneous degree d polynomial f can be written as a product

b2 - Oke Oad-1 - Ckd-1\[C11.d
f=(l11 21" k1)

bz o ke Cead-1 - ekd-1) \lkid

of matrices whose entries are homogeneous linear polynomials.

Q width w(f) := the smallest possible such K.



ABP and Waring rank

Q Every homogeneous degree d polynomial f can be written as a product

b2 - Oke Oad-1 - Ckd-1\[C11.d
f=(l11 21" k1)

bz o ke Cead-1 - ekd-1) \lkid

of matrices whose entries are homogeneous linear polynomials.
Q width w(f) := the smallest possible such K.

Q w(f) < WR(f). [Folklore]



ABP and Waring rank

Q Every homogeneous degree d polynomial f can be written as a product

b2 - Oke Oad-1 - Ckd-1\[C11.d
f=(l11 21" k1)

bz o ke Cead-1 - ekd-1) \lkid

of matrices whose entries are homogeneous linear polynomials.
Q width w(f) := the smallest possible such K.
Q w(f) < WR(f). [Folklore]

Q w(f) < W(f) [ Bldser-Dorfler-Tkenmeyer’21].



ABP and Waring rank

Q Every homogeneous degree d polynomial f can be written as a product

b2 - Oke Oad-1 - Ckd-1\[C11.d
f=(l11 21" k1)

bz o ke Cead-1 - ekd-1) \lkid

of matrices whose entries are homogeneous linear polynomials.
Q width w(f) := the smallest possible such K.
Q w(f) < WR(f). [Folklore]
0 w(f) < WR(f) [ Bléser-Dérfler-Ikenmeyer’21].

Q WR(f) < w(f) - (nd +d +1) [Nisan'91 + Saxena 08].



ABP and Waring rank

Q Every homogeneous degree d polynomial f can be written as a product

U2 Uk Oad-1 - likd-1)\ [C11d
f=(basbiar b))l o - o |l 0 :
b1z - toke era-1 - lokd—1 ) \lkra
of matrices whose entries are homogeneous linear polynomials.

Q width w(f) := the smallest possible such K.

Q w(f) < WR(f). [Folklore]

Q w(f) < W(f) [ Bldser-Dorfler-Tkenmeyer’21].

Q WR(f) <w(f)- (nd +d +1) [Nisan' 91 + Saxena’08].

O VW c VBP.
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ABPs vs Formulas

1 Formula = Circuits, but with tree”-structure.
O width-3 ABP = Formula [Ben-Or & Cleve’92].
O XqX2 + - - - + X15X1g cannot be computed by width-2 ABPs! [Allender-Wang' 1 1]

O width-2 ABPs are not complete model.

QO width-2 ABP = Formula, over F where char(F) # 2

[Bringmann-Ikenmeyer-Zuiddam’18].

Q Border width-2 ABPs are complete over any
field! [Dutta-Ikenmeyer-Komarath-Mittal-Nanoti-Thakkar’24]
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Interesting subclass of VBP

0 Note: VBP := {(fo)n | fn = det(Ag + X7, Ajx;). A; € FPOY(Mxpoly(my
Q Not clear: VBP £ VBP.

O Consider:

n
VBP[1] = {(fa)n | fn = det(A0+ZA,-x,-),A,- e FPOY(M>Poly(M) rank(A;) = 1} .
i=1

Q VBP[y| = VBP 4.

Open Question: VBP 5, g VBP|2;.
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Q Consider Ag = 0 for simplicity. Note: A; = u. ViT, foru’, v/ € F'.

Q LetU=(ul,---,u"), V=" v,

Q det(X], Aix;) = Xscin),isi=r det(Us)det(Vs) [1jes X;-

Q Want to prove: (U, V) — (det(Ug) x det(Vg))g is closed.

Q Pliicker coordinates: U — (Ug)g is closed. (Grassmannian variety)

QO Main Idea: For U, V € F(e)™ ", there are U’, V' € F"™*", such that
E"To (det(Us) - det(Vs)) = det(Ug) - det(Vy) .

Then,

n
lim det( ) Ajx;) = li det(Ug)det(V.
lim det() Apq) = lim >, det(Us)det(Vs)xs

i=1 Sc(n],|S|=r

( lim det(Us)det(Vs))xs
ScnT8)=r ‘€70

n
= ) det(Ugdet(Vg)xs = det( )’ Bix))

Scinl.IS|=r =1 »
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Chow rank and border Chow rank

Chow Rank

Let f € SIC". Chow rank of 7, CR(f), is the smallest k such that f can be written as
a sum of d-product of linear forms ¢j, i.e. f = Zf.(ﬂ Hj‘.j:1 Gj-

=% These are homogeneous depth-3 circuits (Z[k ).

U Border Chow rank ﬁ(f ) is defined analogously:

e—0

ﬁ(f) = min {k . f = lim f¢, for a sequence fe with CR(f¢) < k}.

Q Trivially CR(f) < WR(f), CR(f) < WR(f).

QO Exponential-gap between WR(f) and CR(f) (same in border):
WR(Xq -+ Xp+Yq -+ yn) =27, while CR(X{ -+ Xp + Y1 -+ yn) = 2!
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polynomials, i.e., f = 25;1 H;L L.

Q We can define CRaﬁ(f).

a CRaﬁ(f ) = Kk, is interchangeable with f having a depth-3 circuit with top fan-in
k, denoted as =K1,

Q [Kumar’20] Universality: For any f € C[Xq, ..., Xn], we have CRaﬁ(f) <2,
equivalently f has £[2ITIX-circuit [although size ~ WR(f) can be large].

0 How are CR® and CR? related, when d; < poly(nd)? i.e. How are ZIKI[1x
and ZIKITIS related?
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Fix k > 2 to be a constant. Interesting to understand CRaﬁ(f) = k, since I2IT1Y is
universal!

Q [Folklore] CR¥(f) =k = dc(f) < poly(k, d).

Q detp cannot be computed by a s KT E-circuit, regardless of how large the size
is!

Q poly-size =11 ¢ VBP.

U Does this hold for border?
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De-bordering border Chow rank

Upper bound for CR
Letf € 84C", s.t. CR(f) = k. Then,

de(f) < (ndk)=®P®)

Corollary. For any constant kK > 1, ZIKI[1x c VBP.

100-ft above Idea for X[21T1X: If lim ._,o(Tq + T») = f, where T; are products of

’
linear forms, then (%) has “nice”” deboder-friendly expression.
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Strong Lower bounds

O Can we separate XIKITIZ and VBP?

0O Ambitious goal: Can we separate ZIKITIE and SIK+1ITTE 2

Hierarchy Theorem [Dutta-Saxena 2022]

Fix any constant kK > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by an O(n)-size FIIE circuit such that if f is
computed by a ZIKITIE circuit, then it requires size 20(m)
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Some immediate questions

Q CR(f) <k, then dc(f) < poly(kd), equivalently, is ZITE ¢ VBP.

Q What about Z[2ITIZIT ¢ VBP? They compute lim,_,q(f{ -+ fy + g1 -+ 9¢)s
where f;, g are sparse over C(¢).

0 WR(f) < k, then degree of € in the presentation is at most k — 1.

QO Easiest Question: &(permn) =n®™M  equivalently VNP ¢ VBP!

Thank you! Questions?
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