Uniformity for Imits of tensors arXiv 2305.19866 with Bik-Eggermont-Snowden

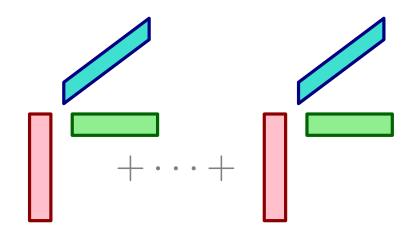
DALAT

Jan Draisma University of Bern

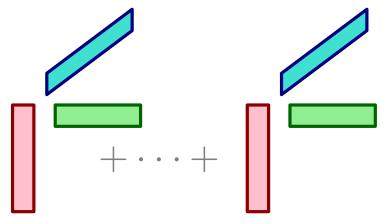
Bochum, April 2025

WACT

Tensor rank for $f \in V^{\otimes d}$: min{ $r \mid f = \sum_{i=1}^{r} v_{i1} \otimes \cdots \otimes v_{id}$ }

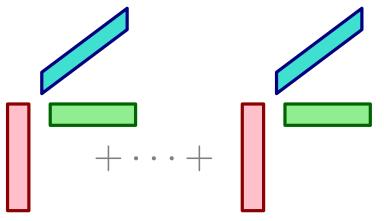


Tensor rank for $f \in V^{\otimes d}$: min{ $r \mid f = \sum_{i=1}^{r} v_{i1} \otimes \cdots \otimes v_{id}$ }



Border rank: $\min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^{r} v_{i1}(\epsilon) \otimes \cdots \otimes v_{id}(\epsilon)\}$

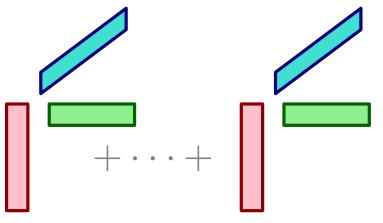
Tensor rank for $f \in V^{\otimes d}$: min $\{r \mid f = \sum_{i=1}^{r} v_{i1} \otimes \cdots \otimes v_{id}\}$



Border rank: $\min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^{r} v_{i1}(\epsilon) \otimes \cdots \otimes v_{id}(\epsilon)\}$

Quadric rank for $f \in S^4 V = \mathbb{C}[x_1, \dots, x_n]_4$: min{ $r \mid f = \sum_{i=1}^r g_i h_i$ with deg $(g_i) = \text{deg}(h_i) = 2$ }

Tensor rank for $f \in V^{\otimes d}$: min $\{r \mid f = \sum_{i=1}^{r} v_{i1} \otimes \cdots \otimes v_{id}\}$



Border rank: $\min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^{r} v_{i1}(\epsilon) \otimes \cdots \otimes v_{id}(\epsilon)\}$

Quadric rank for $f \in S^4 V = \mathbb{C}[x_1, \dots, x_n]_4$: min{ $r \mid f = \sum_{i=1}^r g_i h_i$ with deg $(g_i) = \text{deg}(h_i) = 2$ }

Border quadric rank: $\min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^{r} g_i(\epsilon) h_i(\epsilon), \deg(g_i) = \deg(h_i) = 2\}$

closed A *tensor variety* is a rule $X : V \mapsto X(V) \subseteq V^{\otimes d} =: T(V)$ s.t. for all linear $\varphi : V \to W$ we have $\varphi^{\otimes d}X(V) \subseteq X(W)$.

closed A tensor variety is a rule $X : V \mapsto X(V) \subseteq V^{\otimes d} =: T(V)$ s.t. for all linear $\varphi: V \to W$ we have $\varphi^{\otimes d} X(V) \subseteq X(W)$.

Example: $X(V) = \{v_1 \otimes \cdots \otimes v_d \mid v_i \in V\} \subseteq T(V).$

closed A *tensor variety* is a rule $X : V \mapsto X(V) \subseteq V^{\otimes d} =: T(V)$ s.t. for all linear $\varphi : V \to W$ we have $\varphi^{\otimes d}X(V) \subseteq X(W)$.

Example:
$$X(V) = \{v_1 \otimes \cdots \otimes v_d \mid v_i \in V\} \subseteq T(V).$$

More generally: $T \rightsquigarrow a$ sum of Schur functors, $\varphi^{\otimes d} \rightsquigarrow T(\varphi)$. Write $X(\varphi) := T(\varphi)|_{X(V)} : X(V) \to X(W)$.

closed A *tensor variety* is a rule $X : V \mapsto X(V) \subseteq V^{\otimes d} =: T(V)$ s.t. for all linear $\varphi : V \to W$ we have $\varphi^{\otimes d}X(V) \subseteq X(W)$.

Example:
$$X(V) = \{v_1 \otimes \cdots \otimes v_d \mid v_i \in V\} \subseteq T(V).$$

More generally: $T \rightsquigarrow a$ sum of Schur functors, $\varphi^{\otimes d} \rightsquigarrow T(\varphi)$. Write $X(\varphi) := T(\varphi)|_{X(V)} : X(V) \to X(W)$.

Definition

A morphism $\alpha : X \to Y$ of tensor varieties is a rule $V \mapsto \alpha_V$: $\begin{array}{ccc} X(V) \to Y(V) \text{ s.t. } \forall \varphi : V \to W : & X(V) & & & \\ \text{morphism} & & & X(\varphi) & & & & Y(V) \\ X(\psi) & & & & & Y(\psi) \\ & & & & & Y(\psi) \\ \end{array}$

Easy fact: $\alpha : X \to Y$ a morphism $\rightsquigarrow \overline{\operatorname{im}(\alpha)} : V \mapsto \overline{\operatorname{im}(\alpha_V)}$ is a tensor subvariety of *Y*.

Central challenge: describe elements in $\overline{im(\alpha)}$ uniformly.

Easy fact: $\alpha : X \to Y$ a morphism $\rightsquigarrow \overline{\operatorname{im}(\alpha)} : V \mapsto \overline{\operatorname{im}(\alpha_V)}$ is a tensor subvariety of *Y*.

Central challenge: describe elements in $\overline{im(\alpha)}$ uniformly.

Example [Ballico-Bik-Oneto-Ventura, 2022] $X(V) = (S^2V)^6$ (six quadrics), $Y(V) = S^4V$ (one quartic) $\alpha_V(g_1, h_1, g_2, h_2, g_3, h_3) := g_1h_1 + g_2h_2 + g_3h_3.$ **Note:** im $(\alpha_V) = \{$ quartics of quadric rank $\leq 3 \}.$ **Easy fact:** $\alpha : X \to Y$ a morphism $\rightsquigarrow \overline{\operatorname{im}(\alpha)} : V \mapsto \overline{\operatorname{im}(\alpha_V)}$ is a tensor subvariety of *Y*.

Central challenge: describe elements in $\overline{im(\alpha)}$ uniformly.

Example[Ballico-Bik-Oneto-Ventura, 2022] $X(V) = (S^2 V)^6$ (six quadrics), $Y(V) = S^4 V$ (one quartic) $\alpha_V(g_1, h_1, g_2, h_2, g_3, h_3) := g_1 h_1 + g_2 h_2 + g_3 h_3.$ Note: $im(\alpha_V) = \{$ quartics of quadric rank $\leq 3 \}.$

But $\overline{\operatorname{im}(\alpha_V)}$ also contains $\lim_{\epsilon \to 0} \frac{1}{\epsilon} [(x^2 + \epsilon g)(y^2 + \epsilon f) - (u^2 - \epsilon q)(v^2 - \epsilon p) - (xy + uv)(xy - uv)] = x^2 f + y^2 g + u^2 p + v^2 q =: \beta_V(x, y, u, v, f, g, p, q).$

Easy fact: $\alpha : X \to Y$ a morphism $\rightsquigarrow \overline{im(\alpha)} : V \mapsto \overline{im(\alpha_V)}$ is a tensor subvariety of *Y*.

Central challenge: describe elements in $\overline{im(\alpha)}$ uniformly.

Example[Ballico-Bik-Oneto-Ventura, 2022] $X(V) = (S^2V)^6$ (six quadrics), $Y(V) = S^4V$ (one quartic) $\alpha_V(g_1, h_1, g_2, h_2, g_3, h_3) := g_1h_1 + g_2h_2 + g_3h_3.$ Note: $im(\alpha_V) = \{$ quartics of quadric rank $\leq 3 \}.$

But $\operatorname{im}(\alpha_V)$ also contains $\operatorname{lim}_{\epsilon \to 0}$ $\frac{1}{\epsilon}[(x^2 + \epsilon g)(y^2 + \epsilon f) - (u^2 - \epsilon q)(v^2 - \epsilon p) - (xy + uv)(xy - uv)] = x^2f + y^2g + u^2p + v^2q =: \beta_V(x, y, u, v, f, g, p, q).$

Theorem [BBOV]: $im(\alpha_V)$ is not closed for $dim(V) \gg 0$.

Older theorem [Bik-D-Eggermont-Snowden, 2021] *Y* any tensor variety, then \exists irreducible affine varieties B_i , sums T_i of Schur functors, and morphisms $\beta_i : B_i \times T_i \to Y, i = 1, ..., k$, such that $Y = \bigcup_{i=1}^k \operatorname{im}(\beta_i)$. **Older theorem** [Bik-D-Eggermont-Snowden, 2021] *Y* any tensor variety, then \exists irreducible affine varieties B_i , sums T_i of Schur functors, and morphisms $\beta_i : B_i \times T_i \to Y, i = 1, ..., k$, such that $Y = \bigcup_{i=1}^k \operatorname{im}(\beta_i)$.

Uses *Noetherianity* of tensor varieties and *unirationality*: if *Y* is irreducible, then \exists dominant $\beta : B \times T \rightarrow Y$.

Older theorem [Bik-D-Eggermont-Snowden, 2021] *Y* any tensor variety, then \exists irreducible affine varieties B_i , sums T_i of Schur functors, and morphisms $\beta_i : B_i \times T_i \to Y, i = 1, ..., k$, such that $Y = \bigcup_{i=1}^k \operatorname{im}(\beta_i)$.

Uses *Noetherianity* of tensor varieties and *unirationality*: if *Y* is irreducible, then \exists dominant $\beta : B \times T \rightarrow Y$.

Main Theorem

 $\alpha : X \to Y$ a morphism of tensor varieties, then there is an $N \in \mathbb{N}$ such that for all V and all $y \in \overline{\mathrm{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

Crucial: *N* does not depend on *V*!

[BDES, 2023]

Setting:

 $\beta: T_1 \to T_2$ morphism between tensor spaces with $\operatorname{im}(\beta_V)$ an affine cone spanning $T_2(V)$. For $f \in T_2(V)$ define $R(f) := \min\{r \mid f = \sum_{i=1}^r \beta_V(h_i)\}$ (rank) and $\underline{R}(f) := \min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^r \beta_V(h_i(\epsilon))\}$ (border rank).

Setting:

 $\beta: T_1 \to T_2$ morphism between tensor spaces with $\operatorname{im}(\beta_V)$ an affine cone spanning $T_2(V)$. For $f \in T_2(V)$ define $R(f) := \min\{r \mid f = \sum_{i=1}^r \beta_V(h_i)\}$ (rank) and $\underline{R}(f) := \min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^r \beta_V(h_i(\epsilon))\}$ (border rank).

Corollary

There is a function $F : \mathbb{N} \to \mathbb{N}$ such that for all V and $f \in T_2(V) : R(f) \leq F(\underline{R}(f))$.

Setting:

 $\beta: T_1 \to T_2$ morphism between tensor spaces with $\operatorname{im}(\beta_V)$ an affine cone spanning $T_2(V)$. For $f \in T_2(V)$ define $R(f) := \min\{r \mid f = \sum_{i=1}^r \beta_V(h_i)\}$ (rank) and $\underline{R}(f) := \min\{r \mid f = \lim_{\epsilon \to 0} \sum_{i=1}^r \beta_V(h_i(\epsilon))\}$ (border rank).

Corollary

There is a function $F : \mathbb{N} \to \mathbb{N}$ such that for all V and $f \in T_2(V) : R(f) \leq F(\underline{R}(f))$.

Proof: fix *r* and set $\alpha : T_1^r \to T_2, \alpha(h_1, ..., h_r) := \sum_{i=1}^r \beta(h_i)$. Theorem \rightsquigarrow if $\underline{R}(f) \leq r$, then $\exists h_i(\epsilon) \in T_1(V) \otimes \langle e^{-N}, ..., e^N \rangle$ with $\lim_{\epsilon \to 0} \sum_{i=1}^r \beta(h_i(\epsilon)) = f$. But then *f* is in the span of $\beta(h_i(t_j))$ for i = 1, ..., r and $(2 \deg(\beta)N + 1)$ distinct $t_j \neq 0$ $\rightsquigarrow R(f) \leq (2 \deg(\beta)N + 1)r$.

Main theorem

[BDES, 2023]

 $\alpha : X \to Y$ a morphism, then there is an $N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

• *Easy* if $X(V) = V^m$: then for all V and $y \in \overline{\operatorname{im}(\alpha_V)}$ we have $y \in \overline{\operatorname{im}_{\alpha_U}} : X(U) \to Y(U)$ for some *m*-dimensional $U \subseteq V$. No new results for ordinary tensor rank.

Main theorem

[BDES, 2023]

 $\alpha : X \to Y$ a morphism, then there is an $N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

• *Easy* if $X(V) = V^m$: then for all V and $y \in \overline{\operatorname{im}(\alpha_V)}$ we have $y \in \overline{\operatorname{im}_{\alpha_U}} : X(U) \to Y(U)$ for some *m*-dimensional $U \subseteq V$. No new results for ordinary tensor rank.

• But for β : $(S^2)^2 \rightarrow S^4$, $(f,g) \mapsto f \cdot g$ (quadric rank of quartics), I know no other debordering result, and no other way to prove it than using the theorem above.

Main theorem

[BDES, 2023]

 $\alpha : X \to Y$ a morphism, then there is an $N \in \mathbb{N}$ such that for all V and all $y \in \overline{\operatorname{im}(\alpha_V)}$ there is a formal curve $x(\epsilon) \in X(V)(\mathbb{C}((\epsilon)))$ with exponents $\geq -N$ such that $y = \lim_{\epsilon \to 0} \alpha_V(x(\epsilon))$.

• *Easy* if $X(V) = V^m$: then for all V and $y \in \overline{im(\alpha_V)}$ we have $y \in \overline{im_{\alpha_U}} : X(U) \to Y(U)$ for some *m*-dimensional $U \subseteq V$. No new results for ordinary tensor rank.

• But for β : $(S^2)^2 \rightarrow S^4$, $(f,g) \mapsto f \cdot g$ (quadric rank of quartics), I know no other debordering result, and no other way to prove it than using the theorem above.

• For *partition rank*, ∃ much better bounds (Lampert!)

Ingredients of the proof

• X tensor variety \rightsquigarrow sequence ... $\leftarrow X(\mathbb{C}^n) \leftarrow X(\mathbb{C}^{n+1}) \leftarrow ...;$ set $X_{\infty} := \lim_{\leftarrow n} X(\mathbb{C}^n).$

 X_{∞} is a GL-*variety*: an infinite-dimensional variety with an action of $GL = \bigcup_n GL_n$; e.g. if $X(V) = V \otimes V$, then X_{∞} is the space of $\mathbb{N} \times \mathbb{N}$ -matrices with action $(g, A) \mapsto gAg^T$.

Ingredients of the proof

• X tensor variety \rightsquigarrow sequence ... $\leftarrow X(\mathbb{C}^n) \leftarrow X(\mathbb{C}^{n+1}) \leftarrow ...;$ set $X_{\infty} := \lim_{\leftarrow n} X(\mathbb{C}^n).$

 X_{∞} is a GL-variety: an infinite-dimensional variety with an action of $GL = \bigcup_n GL_n$; e.g. if $X(V) = V \otimes V$, then X_{∞} is the space of $\mathbb{N} \times \mathbb{N}$ -matrices with action $(g, A) \mapsto gAg^T$.

• $\alpha: X \to Y \rightsquigarrow$ morphism $\alpha_{\infty}: X_{\infty} \to Y_{\infty}$ of GL-varieties.

• X tensor variety \rightsquigarrow sequence ... $\leftarrow X(\mathbb{C}^n) \leftarrow X(\mathbb{C}^{n+1}) \leftarrow ...;$ set $X_{\infty} := \lim_{\leftarrow n} X(\mathbb{C}^n).$

 X_{∞} is a GL-*variety*: an infinite-dimensional variety with an action of $GL = \bigcup_n GL_n$; e.g. if $X(V) = V \otimes V$, then X_{∞} is the space of $\mathbb{N} \times \mathbb{N}$ -matrices with action $(g, A) \mapsto gAg^T$.

- $\alpha: X \to Y \rightsquigarrow$ morphism $\alpha_{\infty}: X_{\infty} \to Y_{\infty}$ of GL-varieties.
- $im(\alpha_{\infty})$ is GL-constructible (Chevalley for GL-varieties); in particular, $im(\alpha_{\infty}) \supseteq U$: GL-stable, open, dense in $\overline{im(\alpha_{\infty})}$.

• X tensor variety \rightsquigarrow sequence ... $\leftarrow X(\mathbb{C}^n) \leftarrow X(\mathbb{C}^{n+1}) \leftarrow ...;$ set $X_{\infty} := \lim_{\leftarrow n} X(\mathbb{C}^n).$

 X_{∞} is a GL-*variety*: an infinite-dimensional variety with an action of $GL = \bigcup_n GL_n$; e.g. if $X(V) = V \otimes V$, then X_{∞} is the space of $\mathbb{N} \times \mathbb{N}$ -matrices with action $(g, A) \mapsto gAg^T$.

- $\alpha: X \to Y \rightsquigarrow$ morphism $\alpha_{\infty}: X_{\infty} \to Y_{\infty}$ of GL-varieties.
- $im(\alpha_{\infty})$ is GL-constructible (Chevalley for GL-varieties); in particular, $im(\alpha_{\infty}) \supseteq U$: GL-stable, open, dense in $\overline{im(\alpha_{\infty})}$.

Curve selection theorem: *Y* an irreducible GL-variety, $U \subseteq Y$ open dense, $y \in Y$, then \exists irreducible affine curve *C* and morphism $i : C \rightarrow Y$ with $y \in im(i)$ and $im(i) \cap U \neq \emptyset$.

(implies the Main Theorem)

(Note: $V(x_2^2 - x_1, x_3^3 - x_1, ...) \subseteq \mathbb{C}^{\mathbb{N}}$ admits no nonconstant maps from (finite-type) curves.)

Curve selection theorem: *Y* an irreducible GL-variety, $U \subseteq Y$ open, $y \in Y$, then \exists irreducible affine curve *C* and morphism $i : C \to Y$ with $y \in im(i)$ and $im(i) \cap U \neq \emptyset$. (Note: $V(x_2^2 - x_1, x_3^3 - x_1, ...) \subseteq \mathbb{C}^{\mathbb{N}}$ admits no nonconstant maps from (finite-type) curves.)

Curve selection theorem: *Y* an irreducible GL-variety, $U \subseteq Y$ open, $y \in Y$, then \exists irreducible affine curve *C* and morphism $i : C \to Y$ with $y \in im(i)$ and $im(i) \cap U \neq \emptyset$.

• Unirationality: \exists dominant $\beta_{\infty} : B \times T_{\infty} \to Y$, where T_{∞} is an affine space and *B* is irreducible, finite-dimensional.

(Note: $V(x_2^2 - x_1, x_3^3 - x_1, ...) \subseteq \mathbb{C}^{\mathbb{N}}$ admits no nonconstant maps from (finite-type) curves.)

Curve selection theorem: *Y* an irreducible GL-variety, $U \subseteq Y$ open, $y \in Y$, then \exists irreducible affine curve *C* and morphism $i : C \to Y$ with $y \in im(i)$ and $im(i) \cap U \neq \emptyset$.

• Unirationality: \exists dominant $\beta_{\infty} : B \times T_{\infty} \to Y$, where T_{∞} is an affine space and *B* is irreducible, finite-dimensional.

• $\beta_{\infty}(b_0, t_0) \in U$ for some (b_0, t_0) . If also $\beta_{\infty}(b_1, t_1) = y$, then find a curve $j : C \to B$ with $j(c_0) = b_0$ and $j(c_1) = b_1$ and $h : C \to \mathbb{C}$ with $h(c_i) = i$. Then $i(c) := \beta_{\infty}(j(c), (1 - h(c))t_0 + h(c)t_1))$ works.

Unirationality theorem for pairs

 $Z \subseteq Y$ irreducible, closed GL-subvariety, then \exists diagram of GL-varieties

where T_{∞} is a space of infinite tensors, *B* is an irreducible finite-dimensional affine variety with trivial GL-action, *A* is an irreducible closed subvariety of codimension 1 in *B*, and the vertical GL-equivariant morphisms are dominant.

- so if we take $Z := \overline{GL \cdot y}$, we are done.
- proof of the theorem above uses blow-up and more.

• We have established a qualitative de-bordering results for very general notions of rank of tensors.

• We have established a qualitative de-bordering results for very general notions of rank of tensors.

• To prove these, we have developed a rather powerful theory of infinite-dimensional GL-varieties.

• We have established a qualitative de-bordering results for very general notions of rank of tensors.

• To prove these, we have developed a rather powerful theory of infinite-dimensional GL-varieties.

• In principle, all is algorithmic: there exists an algorithm that takes as input $\beta : T_1 \rightarrow T_2$ and r and computes F(r) (Blatter-D-Ventura); however, it is very far from implemented.

• We have established a qualitative de-bordering results for very general notions of rank of tensors.

• To prove these, we have developed a rather powerful theory of infinite-dimensional GL-varieties.

• In principle, all is algorithmic: there exists an algorithm that takes as input $\beta : T_1 \rightarrow T_2$ and r and computes F(r) (Blatter-D-Ventura); however, it is very far from implemented.

• Unfortunately, the proof does not give any bounds on *F*. However, tensor variety techniques *can* be used to get polynomial bounds for partition rank (Bik-D-Lampert-Ziegler).

• We have established a qualitative de-bordering results for very general notions of rank of tensors.

• To prove these, we have developed a rather powerful theory of infinite-dimensional GL-varieties.

• In principle, all is algorithmic: there exists an algorithm that takes as input $\beta : T_1 \rightarrow T_2$ and r and computes F(r) (Blatter-D-Ventura); however, it is very far from implemented.

• Unfortunately, the proof does not give any bounds on *F*. However, tensor variety techniques *can* be used to get polynomial bounds for partition rank (Bik-D-Lampert-Ziegler).

Thank you!