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Tensor rank for f ¢ V®9: / /
min{r | £ = Xy vig &+ © Vig}

Border rank:
min{r | f=lim._ o Y/_{ Vi1(e) ® - R vig(e)}

Quadric rank for f € S*V = C|xy, ..., Xp]4:
min{r | f =3;_; g;h; with deg(g;) = deg(h;) = 2}

Border quadric rank:
min{r | f =lim._0Y;_; gi(€)hj(€), deg(g;) = deg(h;) = 2}
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(DEfinition closed
A tensor variety is arule X : V — X(V) C V®9 = T(V)
s.t. for all linear ¢ : V — W we have ¢®IX (V) C X(W).

J

Example: X(V)={vi® - --Qvg|Vv,e V} CT(V).

More generally: T ~ a sum of Schur functors, ®% ~ T ().

'Definition )
A morphism« : X — Y of tensor varietiesisarule V — a :
X(V)=Y(V)stVo:V — W: XiV)a—v> YiV)

morphism X (o) Y (o)

X(W)— > Y(W)




Image closure of morphisms

Easy fact: « : X — Y a morphism ~» im(«) : V — im(ay)
IS a tensor subvariety of Y.
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Easy fact: « : X — Y a morphism ~» im(«) : V — im(ay)
IS a tensor subvariety of Y.

[Central challenge: describe elements in im(«) uniformly. J

Example [Ballico-Bik-Oneto-Ventura, 2022]
X(V) = (5°V)® (six quadrics), Y (V) = S*V (one quartic)
ay (91, M, G2, h2, 93, h3) := g1hy + gaho + g3hs.

Note: im(a/) = {quartics of quadric rank < 3}.

But im(« /) also contains I|m€_>o
L[(x? +<—rg)(y tef) - (U —€eq) (V2 —ep) — (xy + uv)(xy — uv)] =
X°f+ y?g+ uPp+viq =: By(x,y,u,v,f,9,p,q).

(Theorem [BBOV]: im(ay) is not closed for dim(V) > 0. |
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Y any tensor variety, then 3 irreducible affine varieties B;,
sums T; of Schur functors, and morphisms
Bi:BixTi— Y,i=1,...,k, suchthat Y = J* . im(B;).

'Older theorem [Bik-D-Eggermont-Snowden, 2021]!

Uses Noetherianity of tensor varieties and unirationality: it Y

IS irreducible, then d dominant 5: Bx T — Y.

« : X — Y a morphism of tensor varieties, then there is
an N € IN such that for all V and all y € im(ay) there is

such that y = lime_,o v (X (€)).

'Main Theorem [BDES, 2023]|

a formal curve x(e) € X(V)(C((e))) with exponents > —N

J

Crucial: N does not depend on V!
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Setting:
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Setting:
B : Ty — T> morphism between tensor spaces with im(Sy)
an affine cone spanning To(V). For f € To(V) define

R(F) = min{r | f = X!, py ()} (rank) and
R(f) :=min{r | f =lim._0Y/_; Bv(hi(e))} (border rank).

‘Corollary
There is a function F : N — IN such that for all V and
e Tp(V): R(f) < F(R()).

J

Proof: fix rand seta : T — To,a(hy,..., h) :=Y[_4 B(hy).
Theorem ~ if R(f) < r,then3h;j(e) € T{ (V)@ (e N, ..., eN)
with lime_o Yi_; B(hi(e)) = f. But then f is in the span of
B(hi(t)) fori =1,...,r and (2deg(B)N + 1) distinct t; # 0
o R(f) < (2deg(ﬁ)N+ 1)r.
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(

Main theorem [BDES, 2023]
« : X — Y a morphism, then there is an N € IN such
that for all V and all y € im(ay) there is a formal curve
x(e) € X(V)(C((e))) with exponents > —N such that

y =lime_oay(x(e)).

\. J

e Fasyif X(V) = V™: thenforall Vand y € im(ay) we have
y € imgy, : X(U) = Y(U) for some m-dimensional U C V.
No new results for ordinary tensor rank.

e But for B : (S%)? — 8% (f,g) — f-g (quadric rank of
quartics), | know no other debordering result, and no other
way to prove it than using the theorem above.

e For partition rank, 3 much better bounds (Lampert!)
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e X tensor variety ~~ sequence
= X(CM) — X(CM) «— L set X = limp X(C).

X~ Is a GL-variety: an infinite-dimensional variety with an
action of GL = |J, GLp; e.9. if X(V) = V® V, then X is
the space of N x IN-matrices with action (g, A) — gAg’.
o n: X — Y ~»morphismas : Xeo — Yoo Of GL-varieties.

e im(uas ) is GL-constructible (Chevalley for GL-varieties); in
particular, im(as) 2 U: GL-stable, open, dense in im(ax).

‘Curve selection theorem: Y an irreducible GL-variety,
U C Y opendense, y € Y, then dirreducible affine curve C
and morphism i : C — Y with y € im(/) and im(/) " U # ©.

(implies the Main Theorem)
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Ingredients of the proof, continued 0

(Note: V(x5 — x1, x5 — Xy,...) € CN admits no nonconstant
maps from (finite-type) curves.)

( )

Curve selection theorem: Y an irreducible GL-variety,
U C Y open, y € Y, then 3 irreducible affine curve C and
morphism i: C — Y with y € im(i) and im(/) N U # @.

\. J

e Unirationality: 3 dominant B : B X Teo — Y, Where T IS
an affine space and B is irreducible, finite-dimensional.

® Boo(bg, fp) € U for some (bg, ). If also B (b1, 1) = Y,
then find a curve j: C — B with j(cy) = by and j(¢q) = by
and h: C — C with h(c;) = i. Then

i(c) := Bo(j(c), (1 —h(c))fy + h(c)ty)) works.



Ingredients of the proof, conclusion 10

'Unirationality theorem for pairs
Z C Y irreducible, closed GL-subvariety, then 3 diagram of
GL-varieties

where T IS a space of infinite tensors, B is an irreducible
finite-dimensional affine variety with trivial GL-action, A is
an irreducible closed subvariety of codimension 1 in B, and
\the vertical GL-equivariant morphisms are dominant.

e so if we take Z := GL - y, we are done.

e proof of the theorem above uses blow-up and more.
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Summary o

e We have established a qualitative de-bordering results for
very general notions of rank of tensors.

e To prove these, we have developed a rather powerful
theory of infinite-dimensional GL-varieties.

e In principle, all is algorithmic: there exists an algorithm
that takes as input 5 : Ty — T» and r and computes F(r)
(Blatter-D-Ventura); however, it is very far from implemented.

e Unfortunately, the proof does not give any bounds on F.
However, tensor variety techniques can be used to get poly-
nomial bounds for partition rank (Bik-D-Lampert-Ziegler).

Thank you!
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