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Quadric rank for f ∈ S4V = C[x1, ... , xn]4:
min{r | f = ∑r

i=1 gihi with deg(gi ) = deg(hi ) = 2}

Border quadric rank:
min{r | f = limϵ→0 ∑r

i=1 gi (ϵ)hi (ϵ), deg(gi ) = deg(hi ) = 2}

+ · · ·+
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Write X (φ) := T (φ)|X (V ) : X (V )→ X (W ).

Definition
A tensor variety is a rule X : V 7→ X (V ) ⊆ V⊗d =: T (V )
s.t. for all linear φ : V → W we have φ⊗d X (V ) ⊆ X (W ).

closed

Example: X (V ) = {v1 ⊗ · · · ⊗ vd | vi ∈ V} ⊆ T (V ).

Definition
A morphism α : X → Y of tensor varieties is a rule V 7→ αV :
X (V )→ Y (V ) s.t. ∀φ : V → W :

morphism
X (V ) Y (V )

X (W ) Y (W )

αV

αW

X (φ) Y (φ)



4 - 1Image closure of morphisms

Easy fact: α : X → Y a morphism⇝ im(α) : V 7→ im(αV )
is a tensor subvariety of Y .

Central challenge: describe elements in im(α) uniformly.
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αV (g1, h1, g2, h2, g3, h3) := g1h1 + g2h2 + g3h3.

Easy fact: α : X → Y a morphism⇝ im(α) : V 7→ im(αV )
is a tensor subvariety of Y .

Central challenge: describe elements in im(α) uniformly.

Note: im(αV ) = {quartics of quadric rank ≤ 3}.

But im(αV ) also contains limϵ→0
1
ϵ [(x

2 + ϵg)(y2 + ϵf )− (u2 − ϵq)(v2 − ϵp)− (xy + uv)(xy − uv)] =
x2f + y2g + u2p + v2q =: βV (x , y , u, v , f , g, p, q).

Theorem [BBOV]: im(αV ) is not closed for dim(V )≫ 0.
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Older theorem [Bik-D-Eggermont-Snowden, 2021]
Y any tensor variety, then ∃ irreducible affine varieties Bi ,
sums Ti of Schur functors, and morphisms
βi : Bi × Ti → Y , i = 1, ... , k , such that Y =

⋃k
i=1 im(βi ).

Uses Noetherianity of tensor varieties and unirationality: if Y
is irreducible, then ∃ dominant β : B × T → Y .

Crucial: N does not depend on V !

Main Theorem [BDES, 2023]
α : X → Y a morphism of tensor varieties, then there is
an N ∈ N such that for all V and all y ∈ im(αV ) there is
a formal curve x(ϵ) ∈ X (V )(C((ϵ))) with exponents ≥ −N
such that y = limϵ→0 αV (x(ϵ)).
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Setting:
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Setting:
β : T1 → T2 morphism between tensor spaces with im(βV )
an affine cone spanning T2(V ). For f ∈ T2(V ) define
R(f ) := min{r | f = ∑r

i=1 βV (hi )} (rank) and
R(f ) := min{r | f = limϵ→0 ∑r

i=1 βV (hi (ϵ))} (border rank).

Proof: fix r and set α : T r
1 → T2, α(h1, ... , hr ) := ∑r

i=1 β(hi ).
Theorem⇝ if R(f ) ≤ r , then ∃hi (ϵ) ∈ T1(V )⊗⟨ϵ−N , ... , ϵN⟩
with limϵ→0 ∑r

i=1 β(hi (ϵ)) = f . But then f is in the span of
β(hi (tj )) for i = 1, ... , r and (2 deg(β)N + 1) distinct tj ̸= 0
⇝ R(f ) ≤ (2 deg(β)N + 1)r . □

Corollary
There is a function F : N→N such that for all V and
f ∈ T2(V ) : R(f ) ≤ F (R(f )).
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• But for β : (S2)2 → S4, (f , g) 7→ f · g (quadric rank of
quartics), I know no other debordering result, and no other
way to prove it than using the theorem above.

• For partition rank, ∃ much better bounds (Lampert!)

Main theorem [BDES, 2023]
α : X → Y a morphism, then there is an N ∈ N such
that for all V and all y ∈ im(αV ) there is a formal curve
x(ϵ) ∈ X (V )(C((ϵ))) with exponents ≥ −N such that
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the space of N×N-matrices with action (g, A) 7→ gAgT .

• α : X → Y ⇝ morphism α∞ : X∞ → Y∞ of GL-varieties.

• im(α∞) is GL-constructible (Chevalley for GL-varieties); in
particular, im(α∞) ⊇ U: GL-stable, open, dense in im(α∞).

(implies the Main Theorem)

Curve selection theorem: Y an irreducible GL-variety,
U ⊆ Y open dense, y ∈ Y , then ∃ irreducible affine curve C
and morphism i : C → Y with y ∈ im(i) and im(i) ∩U ̸= ∅.
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(Note: V (x2
2 − x1, x3

3 − x1, ...) ⊆ CN admits no nonconstant
maps from (finite-type) curves.)

• Unirationality: ∃ dominant β∞ : B × T∞ → Y , where T∞ is
an affine space and B is irreducible, finite-dimensional.

Curve selection theorem: Y an irreducible GL-variety,
U ⊆ Y open, y ∈ Y , then ∃ irreducible affine curve C and
morphism i : C → Y with y ∈ im(i) and im(i) ∩U ̸= ∅.

• β∞(b0, t0) ∈ U for some (b0, t0). If also β∞(b1, t1) = y ,
then find a curve j : C → B with j(c0) = b0 and j(c1) = b1
and h : C → C with h(ci ) = i . Then
i(c) := β∞(j(c), (1− h(c))t0 + h(c)t1)) works.



10Ingredients of the proof, conclusion

• so if we take Z := GL · y , we are done.

Unirationality theorem for pairs
Z ⊆ Y irreducible, closed GL-subvariety, then ∃ diagram of
GL-varieties

A× T∞ B × T∞

Z Y

⊆ ×id

⊆

where T∞ is a space of infinite tensors, B is an irreducible
finite-dimensional affine variety with trivial GL-action, A is
an irreducible closed subvariety of codimension 1 in B, and
the vertical GL-equivariant morphisms are dominant.

• proof of the theorem above uses blow-up and more.
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• We have established a qualitative de-bordering results for
very general notions of rank of tensors.

• To prove these, we have developed a rather powerful
theory of infinite-dimensional GL-varieties.

• In principle, all is algorithmic: there exists an algorithm
that takes as input β : T1 → T2 and r and computes F (r )
(Blatter-D-Ventura); however, it is very far from implemented.

• Unfortunately, the proof does not give any bounds on F .
However, tensor variety techniques can be used to get poly-
nomial bounds for partition rank (Bik-D-Lampert-Ziegler).

Thank you!
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