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Probabilistic Modelling

Setup:
§ Random variables X1, X2, . . . with a joint probability distribution p.
§ State space valpX1q ˆ valpX2q ˆ . . . .

Evidence query:
§ Given ξi P valpXiq

§ compute PrrX1 “ ξ1, X2 “ ξ2, . . . s

Efficiently possible if we can evaluate p efficiently.



Marginal queries

Example:

§ XC “

#

1 if the train station in city C is closed
0 otherwise

§ joint probability distribution on Date ˆ
ą

cities C
XC

§ What is PrrDate = Mar 31, XBochum “ 1s?

§ We need to “marginalize out” all other cities ÝÑ exponential sum
§ Hardness of marginal queries supported by practical evidence
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Probabilistic Circuits

Probabilistic circuits (PC)
§ compute probablity mass functions
§ input nodes are “basic” probability distributions

§ Gaussian distributions (we do not get polynomials)
§ Categorial distributions: PrrXi “ 1sxi ` p1 ´ PrrXi “ 1sx̄i.

§ product nodes
§ sum nodes computing weighted sums (with nonnegative weights)

Evidence queries are possible in polynomial times in the circuit size.
What about marginal queries?



Decomposable circuits

Definition
A PC is decomposable if the scopes of the children of each product gate are disjoint.

Theorem
If a distribution is given by a decomposable PC, then we can efficiently perform
marginalization.



Probabilistic Generating Circuits
§ Given categorical variables X1, . . . , Xn with image t0, . . . , d ´ 1u

§ and joint distribution ppa1, . . . , anq “ PrrX1 “ a1, . . . , Xn “ ans,
§ the probability generating function is a formal polynomial in formal variables
z1, . . . , zn defined by

Gpzq “

d´1
ÿ

j1“0

. . .
d´1
ÿ

jn“0

ppj1, . . . , jnqz
j1
1 ¨ ¨ ¨ zjnn . (1)

Definition (Zhang et al. 2021)

A probabilistic generating circuit (PGC) for a probability distribution p is an arithmetic
circuit that computes G.

§ PCs compute probability mass functions
§ PGCs store probability distributions as formal objects



Probabilistic Generating Circuits

Theorem (Zhang et al. 2021)

PGCs support efficient marginalization for binary random variables

PGCs subsume
§ PCs
§ DPPs (using the algorithm of Mahajan & Vinay).



Determinantal Point Processes (DPP)

Definition
A probability distribution p over n binary random variables X1, . . . , Xn is an L-ensemble
if there exists a (symmetric) positive semidefinite matrix L such that for all x P t0, 1un is
distributed according to detLx, where Lx is the principal minor with the ith rows and
columns chosen if xi “ 1.

§ L is called the kernel
§ If L is psd, then all detLx are nonnegative
§ Normalizing constant is detpL ` Iq.
§ Allows for efficient marginalization



Our results

Theorem (Agarwal & B., 2024)

Marginalization is #P-hard for PGC if the categories have size ě 3.

Theorem (Agarwal & B., 2024)

For every PGC over binary variables, there is an equivalent nonmonotone PC (that
computes the probability mass function.)

gpx1, x1, ..., xn, xnq “ fp
x1
x1

,
x2
x2

, ...,
xn

xn
q ¨

n
ź

i“1

xi.



Our Results (2)

It is essential how we store the basic distributions:
§

řd´1
i“0 αix

i

§
řd´1

i“0 αizi

Theorem (Agarwal & B., 2024)

Let C be a nonmonotone PC of size s computing a probability distribution over categorical
random variables X1, . . . , Xn such that the polynomial P computed by C is set-multilinear
with respect to the partition tzi,0, . . . , zi,d´1u, 1 ď i ď n. Let
A1, . . . , An Ď t0, . . . , d ´ 1u. Then we can compute PrrX1 P A1, . . . , Xn P Ans in time
Opsq.



ML — ACT dictionary

probabilistic circuit monotone arithmetic circuit
decomposable syntactically multilinear
sum product network monotone layered circuit
subcircuit tree parse tree
circuit polynomial sum of parse trees representation
. . . . . .

Conclusion: We are not as smart as we think
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Interesting Questions

§ Are there more expressive models that are still tractable?
§ Are the “generalizations” of DPPs?
§ Are there models that subsume DPPs and PCs and compute a nonnegative function

by design? Formally: Is there a large circuit class such that given C, we can decide
in polynomial time whether C is nonnegative on the part of the domain of interest?



Probabilistic Circuits

Identification in Structural Causal Models



Polynomial Identity Testing

We all love PIT!
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Causation versus Correlation?

Does smoking cause lung cancer?
§ Random variable X1 = number of cigarettes smoked
§ X1 “ fpϵ1q is a function of an unknown random variable ϵ1.
§ Random variable X2 = binary random variable whether one develops lung cancer.
§ X2 “ gpX1, ϵ1q is a function of X1 and an unknowm random variable ϵ1.
§ Observed correlation between X1 and X2.
§ Does X2 cause X3 or are ϵ1 and ϵ2 are correlated.
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Identification in Structural Causal Models
§ random variables V0, V1, . . . , Vn

§ Vi “
ř

j λj,iVj ` ϵi with some additional error term ϵi
§ error terms are normally distributed with zero mean
§ covariances between the terms given by Ω “ pωi,jq

§ models are recursive, i.e., for all j ą i, we have λj,i “ 0.

0 1 2
λ0,1 λ1,2

ω1,2

Identification
Given covariances between the Vi, can we recover the λi,j and ωi,j?

In the example:
§ σ0,1 “ λ0,1 and σ0,2 “ λ0,1λ1,2. Thus λ1,2 “

λ0,1λ1,2
λ0,1

“
σ0,2
σ0,1



Generic Identification

§ Given a mixed graph G “ pV,D,Bq, pG,Dq is acyclic.
§ Relation of observed covariances and parameters is given by

Σ “ pI ´ Λq´1ΩpI ´ Λq´T

Definition
G is identifable, if for all Σ (in the image), the parameters Λ (and Ω) are uniquely
determined.

§ Solved, but somewhat boring.

Definition
G is generically identifiable, if for almost all Σ (in the image), the parameters Λ (and Ω)
are uniquely determined.



Methods for Identification

§ Complexity of the problem is widely open

IV

gIS, scIS

IS, HTC, AVS, gHTC

cIV, aIV

gAVS

IC

cAV TreeID

ACID
Complete Methods
‚ Gröbner (double EXP)
‚ ETR (PSPACE)

§ IV = Instrumental variable
§ HTC = Halftrek criterion (Foygel, Draisma, Drton 2012)
§ Gröbner basis: Sullivant, Garcia-Puente, Spielvogel 2010
§ ETR = Existential theory of the reals (Dörfler et al. 2025)



Hardness of identification

Numerical identification:
§ Given a structural causal model and a feasible matrix of observed covariances (Σ).
§ Decide whether there is one ore more solutions (Λ and Ω).

Theorem (Dörfler et al. 2024)
Numerical identification is hard for DR.

§ DR = existential theory of the reals.
§ still hard if we plant an easy solution.



Tree-shaped Structural Causal Models

Definition (Tree-shaped SCM)

If the directed edges form a directed tree with root 0, then the SCM is called tree-shaped.

0 1 2

3 4

λ0,1 λ1,2

λ0,3 λ1,4

ω2,4

ω1,4

Key feature: Each node has at most one incoming directed edge.

Theorem (Van der Zander, AISTATS 2022)
Generic identification in tree-shaped SCMs is in PSPACE.˚



Our result

Theorem (Gupta & B, 2024)

There is an randomized polynomial algorithm that given a tree-shaped SCM M,
determines for each parameter λi,j whether it is

§ generically identifiable or
§ generically 2-identifiable or
§ generically unidentifiable.

In the first two cases, it provides corresponding expressions.

Main features:
§ polynomial running time
§ completeness for tree-shaped SCMs
§ 100% PIT



Identification in Tree-shaped SCMs

Theorem (Van der Zander et al., AISTATS 2022)
λx,y is generically identifiable (k-identifiable) iff the system

λp,iλq,jσp,q ´ λp,iσp,j ´ λq,jσi,q ` σi,j “ 0 for each missing i Ø j

λp,iσ0,p ´ σ0,i “ 0 for each missing 0 Ø i

has a unique solution for λx,y (k solutions, respectively).

p q j

i

λq,j

λp,i missing



Möbius transforms

§ undirected graph G

§ nodes are variables
§ edges are labeled with a bilinear equation in the incident variables:

axy ´ bx ` cy ´ d “ 0

§ To eliminate y, write
y “

bx ` d

ax ` c

§ This is a Möbius transform. Inverse is given by the adjoint matrix.
§ We assume that all p b d

a c q have rank two.
§ In the application, rank one edges can be dealt separately. (Rank testing = PIT)



Solving systems of bilinear equations
§ Let

axy ´ bx ` cy ´ d “ 0,

Ayz ´ By ` Cz ´ D “ 0

be two such bilinear equations, sharing the indeterminate y.
§ To eliminate y, write

y “
bx ` d

ax ` c
, z “

By ` D

Ay ` C

and obtain

z “
pBb ` Daqx ` pBd ` Dcq

pAb ` Caqx ` pAd ` Ccq
.

§ New coefficients:
`

B D
A C

˘

p b d
a c q “

`

Bb`Da Bd`Dc
Ab`Ca Ad`Cc

˘

.
§ Composition of Möbius transforms



Identification using cycles

y

x

u

z

Mpz,xq “
`

1 0
0 1

˘

Mpx,yq “
`

1 0
2 1

˘

Mpx,uq “
`

1 2
2 1

˘

Mpy,zq “
`

1 0
´2 1

˘

Mpu,zq “
`

1 ´1
0 1

˘

§ Two equations for x of the form x “ bx`d
ax`c , but they could be trivial.

§ If one is nontrivial, solution can be propagated to all other variables.
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When is an equation trivial?

Lemma
Let x1, . . . , xt, x1 be a simple directed cycle and p b d

a c q be the corresponding product.
1. If a ­“ 0, then x1 has at most two solutions (depending on the discriminant).
2. If a “ 0 but c ´ b ­“ 0, then x1 has exactly one solution.
3. If a “ c ´ b “ 0 but d ­“ 0, then there is no solution.
4. If a “ c ´ b “ d “ 0, then x1 has infinitely many solutions.

1. Solutions given by ´pc´bq˘
?
∆

2a . Zero solutions cannot happen here.
2. Solutions given by d

c´b (rationally identifiable).
3. Cannot happen in our application.

ÝÑ 100% PIT



How to find such an identifying cycle?

§ Van der Zander et al. enumerate all cycles (PSPACE).

Definition
We call a closed walk identifying if p b d

a c q is not a multiple of the identity matrix.

§ Let W be the weighted adjacency matrix with 2 ˆ 2-matrices as entries.
§ Diagonal elements of Wt are the sums of all matrices of closed walks of length t.
§ Problem 1: We need simple walks.
§ Problem 2: Cancellations

Lemma
If there is an identifying walk of length t, then there is an identifying simple walk of length
ď t.



Finger printing

up0q

xp0q

yp0q

zp0q

up1q

xp1q

yp1q

zp1q

up2q

xp2q

yp2q

zp2q

up3q

xp3q

yp3q

zp3q

§ weight of pv
pkq

i , v
pk`1q

j q is xpk`1q

i,j wpvi, vjq, wpvi, vjq weight of original edge.
§ No cancellations. Use PIT to check for an identifying cycle.
§ Use self-reduction to find an identifying cycle.



Overall algorithm
Input: A tree-shaped mixed graph M “ pV,D,Bq

Output: For each λp,i, we output whether it is generically identifiable, 2-identifiable, or
unidentifiable. In the first two cases, we output corresponding FASTPs.

1: Find all rank-1 edges in the missing edge graph pV, B̄q.
2: For each missing rank-1 edge i Ø j, check which of the parameters λp,i or λq,j we can

identify. Mark the node i or j, respectively.
3: Remove all rank-1 edges from the missing edge graph. Call the resulting graph H. Let

C1, . . . , Ct be the connected components of H.
4: for each connected component Ci do
5: if Ci contains a marked node then
6: Propagate the result to all unidentified nodes in Ci.
7: else
8: Find an identifying cycle in Ci (using PIT).
9: If no such cycle is found, report that all nodes of Ci are unidentifiable.

10: If the cycle produces one solution, then progagate it to all the nodes of Ci.
11: If the cycle produces two solutions, then propagate it to all the nodes of Ci.
12: Plug the solutions into the equations of Ci and use PIT to check whether all equations

are satisfied.



Implementation
We benchmarked our code on 856 SCMs with 8 nodes (from van der Zander et al.)

1 second

1 minute

1 hour

1 day

1 week

1 month

1 year

Gröbner
Van der Zander et al.

Ours

Scale pseudologarithmic



computational complexity

§ Since 2025, I am the editor-in-chief of computational complexity.
§ Founded by Joachim von zur Gathen in the spirit of Schönhage and Strassen.
§ Transformative journal.
§ Editorial board contains 5 Turing award winners, 2 Abacus prize winners, 1 Abel

prize winner.
§ Quantum is covered, too: Thomas Vidick and Francois Le Gall.
§ If mathematicians (and physicists) are to take us seriously, we need to submit to

journals, too.

Please consider submitting very good papers of yours!
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