Quantum Information Theory, Spring 2020

Practice problem set #13

You do **not** have to hand in these exercises, they are for your practice only.

1. Symmetric subspace:

- (a) Write out Π_2 and Π_3 .
- (b) In class we wrote down a basis for $\operatorname{Sym}^2(\mathbb{C}^2)$. Write down bases of $\operatorname{Sym}^2(\mathbb{C}^d)$ and $\operatorname{Sym}^3(\mathbb{C}^2)$.
- (c) Verify that $R_{\pi}R_{\tau}=R_{\pi\tau}$ and $R_{\pi}^{\dagger}=R_{\pi^{-1}}$, for all π , $\tau\in S_n$. (d) Verify that $\Pi_n=\frac{1}{n!}\sum_{\pi\in S_n}R_{\pi}$ is the orthogonal projection onto the symmetric subspace.
- 2. **Integral formula:** In this exercise you can prove the integral formula:

$$\Pi_{n} = \binom{n+d-1}{n} \int |\psi\rangle^{\otimes n} \langle \psi|^{\otimes n} d\psi =: \tilde{\Pi}_{n}$$

- (a) Show that $\tilde{\Pi}_n = \Pi_n \tilde{\Pi}_n$.
- (b) Recall the following important fact from Lemma 13.10: If $A \in L(\mathcal{H}^{\otimes n})$ is an operator such that $[A, U^{\otimes n}] = 0$ for all unitaries $U \in U(\mathcal{H})$, then A is a linear combination of permutation operators R_{π} , $\pi \in S_n$. Use this fact to show that $\tilde{\Pi}_n = \sum_{\pi} c_{\pi} R_{\pi}$ for suitable $c_{\pi} \in \mathbb{C}$.
- (c) Use parts (a) and (b) to prove the integral formula. That is, show that $\tilde{\Pi}_n = \Pi_n$.
- 3. **Haar measure:** There is a unique probability measure dU on the unitary operators $U(\mathcal{H})$ that is invariant under $U \mapsto VUW$ for every pair of unitaries V, W. It is called the *Haar measure*. Its defining property can be stated as follows: For every continuous function f on $U(\mathcal{H})$ and for all unitaries $V, W \in U(\mathcal{H})$, it holds that $\int f(U) dU = \int f(VUW) dU$. Now let $A \in L(\mathcal{H})$.
 - (a) Argue that \(\text{UAU}^\dagger dU \commutes with all unitaries.
 - (b) Deduce that $\int UAU^{\dagger}dU = \frac{Tr[A]}{d}I$, where $d = \dim \mathcal{H}$.
- 4. \triangle **De Finetti theorem and quantum physics (optional):** Given a Hermitian operator h on $\mathbb{C}^d \otimes \mathbb{C}^d$, consider the operator $H = \frac{1}{n-1} \sum_{i \neq j} h_{i,j}$ on $(\mathbb{C}^d)^{\otimes n}$, where $h_{i,j}$ acts by h on subsystems iand j and by the identity on the remaining subsystems (e.g., $h_{1,2} = h \otimes I^{\otimes (n-2)}$).
 - (a) Show that $\frac{E_0}{n} \leqslant \frac{1}{n} \langle \psi^{\otimes n} | H | \psi^{\otimes n} \rangle = \langle \psi^{\otimes 2} | h | \psi^{\otimes 2} \rangle$ for every pure state ψ on \mathbb{C}^d .

Let E_0 denote the smallest eigenvalue of H and $|E_0\rangle$ a corresponding eigenvector. If the eigenspace is one-dimensional and n > d then $|E_0\rangle \in \operatorname{Sym}^n(\mathbb{C}^d)$ (you do not need to show this).

(b) Use the de Finetti theorem to show that $\frac{E_0}{n} \approx \min_{\|\psi\|=1} \langle \psi^{\otimes 2} | h | \psi^{\otimes 2} \rangle$ for large n.

Interpretation: The Hamiltonian H describes a mean-field system. Your result shows that in the thermodynamic limit the ground state energy density can be computed using states of form $\psi^{\otimes n}$.

1