Quantum Information Theory, Spring 2020

Practice problem set #8

You do **not** have to hand in these exercises, they are for your practice only.

1. Warmup:

- 1. Show that, if ρ and σ are both pure states, $D(\rho \| \sigma) \in \{0, \infty\}$.
- 2. Find a state ρ and a channel Φ such that $H(\Phi[\rho]) < H(\rho)$.
- 3. Compute the relative entropy $D(\rho \| \sigma)$ for $\rho = \frac{1}{2} |0\rangle \langle 0| + \frac{1}{2} |1\rangle \langle 1|$ and $\sigma = \frac{1}{4} |+\rangle \langle +| + \frac{3}{4} |-\rangle \langle -|$.
- 2. **Matrix logarithm:** Recall that the logarithm of a positive definite operator with eigendecomposition $Q = \sum_i \lambda_i |e_i\rangle \langle e_i|$ is defined as $\log(Q) = \sum_i \log(\lambda_i) |e_i\rangle \langle e_i|$ (as always, our logarithms are to base 2). Verify the following properties:
 - 1. $\log(cI) = \log(c)I$ for every $c \ge 0$.
 - 2. $log(Q \otimes R) = log(Q) \otimes I_B + I_A \otimes log(R)$ for all positive definite $Q \in L(\mathcal{H}_A), R \in L(\mathcal{H}_B)$.
 - 3. $\log(\sum_{x\in\Sigma}p_x|x\rangle\langle x|\otimes\rho_x)=\sum_{x\in\Sigma}\log(p_x)|x\rangle\langle x|\otimes I_B+\sum_{x\in\Sigma}|x\rangle\langle x|\otimes\log(\rho_x)$ for every ensemble $\{p_x,\rho_x\}_{x\in\Sigma}$ of positive definite operators $\rho_x\in D(\mathcal{H}_B)$.

Warning: It is in general not true that log(QR) = log(Q) + log(R)!

- 3. From relative entropy to entropy and mutual information: Use Problem 2 to verify the following claims from class:
 - 1. $D(\rho \| \frac{I}{d}) = \log d H(\rho)$ for every $\rho \in D(\mathcal{H})$, where $d = \dim \mathcal{H}$.
 - 2. $D(\rho_{AB}\|\rho_A\otimes\rho_B)=I(A:B)_{\rho_{AB}}$ for every $\rho_{AB}\in D(\mathcal{H}_A\otimes\mathcal{H}_B)$, where $\rho_A=\mathrm{Tr}_B[\rho_{AB}]$ and $\rho_B=\mathrm{Tr}_A[\rho_{AB}]$. You may assume that all three operators are positive definite.
- 4. **Entropy and ensembles:** In this problem, you will prove the upper bound on the Holevo information that we discussed in class: For every ensemble $\{p_x, \rho_x\}$,

$$\chi(\{p_x,\rho_x\})\leqslant H(\mathfrak{p})\quad\text{or, equivalently,}\quad H(\sum_x p_x\rho_x)\leqslant H(\mathfrak{p})+\sum_x p_xH(\rho_x).$$

Moreover, show that equality holds if and only if the ρ_x with $p_x > 0$ have pairwise orthogonal image.

In terms of the cq-state corresponding to the ensemble, the above inequality can also be written as $H(XB)\geqslant H(B)$. This confirms our claim in Lecture 7. In Homework Problem 6.4 you showed that $H(XB)\geqslant H(X)$, but since the situation is not symmetric (X is classical but B is not) we now need a different argument.

- 1. First prove these claims assuming that each ρ_x is a pure state, i.e., $\rho_x = |\psi_x\rangle\langle\psi_x|$. Hint: Consider the pure state $|\Phi\rangle = \sum_x \sqrt{p_x} |x\rangle \otimes |\psi_x\rangle$ and compare the entropy of the first system before and after measuring in the standard basis.
- 2. Now prove the claims for general ρ_x .

Hint: Apply part (a) to a suitable ensemble obtained from the eigendecompositions of the ρ_x .

1