Quantum Information Theory, Spring 2020

Practice problem set #4

You do **not** have to hand in these exercises, they are for your practice only.

- 1. **Functionals:** Let λ : L(\mathcal{H}) $\to \mathbb{C}$ be a linear function.
 - (a) Show that there exists a unique $X \in L(\mathcal{H})$ such that $\lambda[M] = Tr[X^{\dagger}M]$ for all $M \in L(\mathcal{H})$.
 - (b) How about if $\lambda[M] \ge 0$ for all $M \ge 0$?
- 2. **Depolarizing and dephasing channels:** The *completely depolarizing channel* on $L(\mathcal{H})$ is given by

$$\mathcal{D}[M] = \text{Tr}[M] \frac{I}{d} \qquad \forall M \in L(\mathcal{H}),$$

where $d = \dim \mathcal{H}$. For $\mathcal{H} = \mathbb{C}^{\Sigma}$, the *completely dephasing channel* is defined by

$$\Delta[M] = \sum_x \langle x | M | x \rangle \, | x \rangle \langle x | \qquad \forall M \in L(\mathcal{H}).$$

- (a) Compute the Choi operator of either channel.
- (b) What is the result of acting by either channel on half of a maximally entangled state?
- (c) For qubits, $\mathcal{H} = \mathbb{C}^2$, how does either channel act on Bloch vectors?
- 3. **Kraus and Stinespring:** Find Kraus and Stinespring representations for the following quantum channels:
 - (a) Trace: $\Phi[M] = Tr[M]$
 - (b) *Add pure state*: $\Phi[M_A] = M_A \otimes |\phi\rangle\langle\phi|_B$ for a unit vector $|\phi_B\rangle \in \mathcal{H}_B$.
 - (c) Completely dephasing channel: $\Delta[M] = \sum_{x} \langle x | M | x \rangle \langle x |$ (same as above).
- 4. **Kraus and Stinespring:** Given Kraus or Stinespring representations of two channels $\Phi_{A\to B}$ and $\Psi_{B\to C}$, explain how to obtain the same representation for $\Psi_{B\to C} \circ \Phi_{A\to B}$.
- 5. **Stinespring with unitaries:** Use the Stinespring representation to prove that any quantum channel $\Phi_{A\to B}$ can be written in the following form:

$$\Phi_{A\to B}[M_A] = \operatorname{Tr}_{\mathsf{E}} \left[\mathsf{U}_{A\,\mathsf{C}\to\mathsf{B}\,\mathsf{E}}(\mathsf{M}_A\otimes\sigma_{\mathsf{C}}) \mathsf{U}_{A\,\mathsf{C}\to\mathsf{B}\,\mathsf{E}}^{\dagger} \right] \qquad \forall \mathsf{M}_A,$$

where \mathcal{H}_C , \mathcal{H}_E are auxiliary Hilbert spaces, $\sigma_C \in D(\mathcal{H}_E)$ is a *pure* state, and $U_{AC \to BE}$ a *unitary*.

6. **Adjoint superoperator:** Recall that the Hilbert-Schmidt inner product on $L(\mathcal{H})$ is given by $\langle M, N \rangle_{HS} = Tr[M^{\dagger}N]$. This allows us to define the *adjoint* of a superoperator $\Phi \in L(L(\mathcal{H}_A), L(\mathcal{H}_B))$. Explicitly, this is the superoperator $\Phi^{\dagger} \in L(L(\mathcal{H}_B), L(\mathcal{H}_A))$ such that

1

$$\langle M_A, \Phi^\dagger[N_B] \rangle_{HS} = \langle \Phi[M_A], N_B \rangle_{HS} \qquad \forall M_A, N_B.$$

- (a) Given a Kraus representation of Φ , explain to find one for Φ^{\dagger} .
- (b) Show that Φ is completely positive if and only if Φ^{\dagger} is completely positive.
- (c) Show that Φ is trace-preserving if and only if Φ^{\dagger} is unital (i.e., $\Phi^{\dagger}[I_B] = I_A$).