Quantum Information Theory, Spring 2020

Practice problem set #3

You do **not** have to hand in these exercises, they are for your practice only.

- 1. **Positive semidefinite operators:** For all $Q \in PSD(\mathcal{H})$, show that:
 - (a) $A^{\dagger}QA$ is positive semidefinite for all $A \in L(\mathcal{H})$.
 - (b) If Q is invertible, its inverse Q^{-1} is again positive semidefinite.

A positive semidefinite operator that is invertible is often called *positive definite*.

- 2. **Properties of the trace distance:** Show that the trace distance $T(\rho, \sigma) := \frac{1}{2} \|\rho \sigma\|_1$ satisfies the following properties:
 - (a) *Invariance*: $T(\rho, \sigma) = T(V\rho V^{\dagger}, V\sigma V^{\dagger})$ for all states ρ, σ and any isometry V.
 - (b) *Monotonicity:* $T(\rho_A, \sigma_A) \leq T(\rho_{AB}, \sigma_{AB})$ for all states ρ_{AB}, σ_{AB} .

The fidelity $F(\rho, \sigma) := \|\sqrt{\rho}\sqrt{\sigma}\|_1$ is likewise invariant under isometries (can you see why?). However, its monotonicity goes the opposite way (see the homework). Why is this intuitive?

- 3. **Quantum channels:** Show that the following maps Φ are quantum channels by directly verifying that they are trace-preserving and completely positive.
 - (a) Basis change: $\Phi[M] = UMU^{\dagger}$ for a unitary U.
 - (b) *Add state*: $\Phi[M] = M \otimes \sigma$ for a state σ .
 - (c) Partial trace: $\Phi[M_{AB}] = Tr_B[M_{AB}]$.
 - (d) Classical channel: $\Phi[M] = \sum_{x,y} p(y|x) \langle x|M|x \rangle |y\rangle \langle y|$, where p(y|x) is a conditional probability distribution (i.e., p(y|x) is a probability distribution in y for each fixed x).
- 4. **Composing channels:** If $\Phi_{A \to B}$, $\Psi_{B \to C}$ are quantum channels, then so is $\Psi_{B \to C} \circ \Phi_{A \to B}$. If $\Phi_{A \to B}$, $\Xi_{C \to D}$ are quantum channels, then so is $\Phi_{A \to B} \otimes \Xi_{C \to D}$.
- 5. **Schmidt decomposition:** Let $\rho_A = \sum_{i=1}^r p_i |e_i\rangle \langle e_i|$ be an arbitrary eigendecomposition, where p_1, \ldots, p_r are the nonzero eigenvalues of ρ_A and the $|e_i\rangle$ corresponding eigenvectors. If some eigenvalue appears more than once then this decomposition is *not* unique.
 - (a) Show that, nevertheless, any purification $|\Psi_{AB}\rangle$ of ρ_A has a Schmidt decomposition of the form $|\Psi_{AB}\rangle = \sum_{i=1}^r s_i |e_i\rangle \otimes |f_i\rangle$, with the same $|e_i\rangle$ as above. Hint: Start with an arbitrary Schmidt decomposition and rewrite it in the desired form.
 - (b) Conclude that any two purifications $|\Psi_{AB}\rangle$ and $|\Phi_{AB}\rangle$ are related by a unitary U_B as claimed in Lecture 2.

How about if we consider purifications on different Hilbert spaces?