
Quantum Information Theory, Spring 2020
Homework problem set #2 due February 17, 2020

Rules: Always explain your solutions carefully. You can work in groups, but must write up your
solutions alone. You must submit your solutions before the Monday lecture (in person or by email).

1. (4 points) Nayak’s bound: Alice wants to communicatem bits to Bob by sending n qubits. She
chooses one state ρ(x) ∈ D(H), whereH = (C2)⊗n, for each possible message x ∈ {0, 1}m that
she may want to send. Bob uses a measurement µ : {0, 1}m → PSD(H) to decode the message.

(a) Write down a formula for the probability that Bob successfully decodes Alice’s message,
assuming the latter is drawn from a known probability distribution p(x) on {0, 1}m.

(b) Show that if the message is drawn uniformly at random, then the probability that Bob
successfully decodes the bitstring is at most 2n−m.

2. (4 points) Trace distance and Helstrom’s theorem: The (normalized) trace distance between two
quantum states ρ, σ on a Hilbert space H is defined as

T(ρ, σ) :=
1

2
‖ρ− σ‖1,

in terms of the trace norm ‖·‖1, which you know from the lecture and the previous homework.

(a) Show that T(ρ, σ) ∈ [0, 1].
(b) Show that T(ρ, σ) = max06Q6I Tr[Q(ρ− σ)], and that the maximum can be achieved by a

projection Q. Hint: Consider the spectral decomposition of ρ− σ.

Now suppose we want to distinguish ρ and σ by a measurement µ : {0, 1} → PSD(H). By
convention, outcome ‘0’ corresponds to state ρ, while outcome ‘1’ corresponds to state σ.
Assuming both states occur with 50% probability, the probability of success using µ is given by

psuccess =
1

2
Tr[ρµ(0)] + 1

2
Tr[σµ(1)].

(c) Use (b) to proveHelstrom’s theorem, which states that themaximal probability of success (over
all possible measurements) is 1

2 + 1
2T(ρ, σ) and can be achieved by a projectivemeasurement.

3. (4 points) Extensions of pure states: LetHA, HB, and HC be arbitrary Hilbert spaces.

(a) LetMA ∈ L(HA) and NBC ∈ L(HB ⊗HC). Then, TrC[MA ⊗NBC] =MA ⊗ TrC[NBC].
(b) Let ρAB ∈ D(HA ⊗HB) such that ρA is pure. Then, ρAB = ρA ⊗ ρB.

Hint: In class we proved this when ρAB is pure. Use a purification to reduce to this case.
(c) Let ρABC ∈ D(HA ⊗ HB ⊗ HC) such that ρAB is pure. Then, ρAC = ρA ⊗ ρC and

ρBC = ρB ⊗ ρC.
(d) Let ρABC ∈ D(HA⊗HB⊗HC) such that ρAB and ρAC are pure. Then, ρABC = ρA⊗ρB⊗ρC.

Notation: Just like in class, if ρAB is a state then we write ρA and ρB for its reduced states obtained by
taking suitable partial traces (likewise for ρABC and its reduced states).

1


