Quantum Information Theory, Spring 2020

Practice problem set #1

You do **not** have to hand in these exercises, they are for your practice only.

- 1. **Dirac notation quiz:** In the Dirac notation, every vector is written as a 'ket' $|\psi\rangle$ and every linear functional is written as a 'bra' $\langle \psi | = |\psi\rangle^{\dagger}$, where † denotes the adjoint. One can think of kets as column vectors and bras as row vectors. Hence, if $|\psi\rangle$ is a column vector, then $\langle \psi |$ denotes the row vector obtained by taking the *conjugate transpose* of the column vector.
 - (a) Let $|\psi\rangle$ and $|\phi\rangle$ be vectors in \mathbb{C}^n and A an $n\times n$ matrix. Which of the following expressions are syntactically correct? For those that do, what kind of object do they represent (e.g., numbers, vectors, . . .)? Can you write them using 'ordinary' notation?

(b) Let $\rho = |\psi\rangle\langle\psi|$ and $\sigma = |\varphi\rangle\langle\varphi|$ be two pure states on the same system. Verify that

$$\text{Tr}[\rho\sigma] = |\langle\psi|\varphi\rangle|^2.$$

Hint: You may use that the trace is cyclic, i.e. Tr[ABC] = Tr[CAB] = Tr[BCA].

- 2. **Positive semidefinite operators:** Recall from class that an operator $A \in L(\mathcal{H})$ is called *positive semidefinite* if it is Hermitian and all its eigenvalues are nonnegative. We denote by $PSD(\mathcal{H})$ the set of positive semidefinite operators on a Hilbert space \mathcal{H} . Argue that the following conditions are equivalent:
 - (a) A is positive semidefinite.
 - (b) $A = B^{\dagger}B$ for an operator $B \in L(\mathcal{H})$.
 - (c) $A = B^{\dagger}B$ for an operator $B \in L(\mathcal{H}, \mathcal{K})$ and some Hilbert space \mathcal{K} .
 - (d) $\langle \psi | A | \psi \rangle \geqslant 0$ for every $\psi \in \mathcal{H}$.
 - (e) $Tr[AC] \ge 0$ for every $C \in PSD(\mathcal{H})$.
- 3. **Convexity:** Recall that a set S is *convex* if $px + (1 p)y \in S$ for every $x, y \in S$ and $p \in [0, 1]$.
 - (a) Show that $PSD(\mathcal{H})$ is convex and closed under multiplication by $\mathbb{R}_{\geqslant 0}$ (i.e., a *convex cone*).
 - (b) Show that $D(\mathcal{H})$ is convex.
- 4. **Positive semidefinite order:** Given two operators A and B, we write $A \le B$ if the operator B A is positive semidefinite. Show that the following three conditions are equivalent:
 - (a) $0 \leqslant A \leqslant I$.
 - (b) A is Hermitian and has eigenvalues in [0, 1].
 - (c) $\langle \psi | A | \psi \rangle \in [0, 1]$ for every unit vector $| \psi \rangle \in \mathcal{H}$.

5. **Bloch sphere:** Recall from the lecture that the state ρ of a single qubit can be parameterized by the Bloch vector $\vec{r} \in \mathbb{R}^3$, $||\vec{r}|| \le 1$. Namely:

$$\rho = \frac{1}{2}(I + r_x X + r_y Y + r_z Z).$$

- (a) Show that $r_x = \text{Tr}[\rho X]$, $r_y = \text{Tr}[\rho Y]$, and $r_z = \text{Tr}[\rho Z]$.
- (b) Let σ be another qubit state, with Bloch vector \vec{s} . Verify that $\text{Tr}[\rho\sigma] = \frac{1}{2}(1 + \vec{r} \cdot \vec{s})$.
- (c) Let $\{|\psi_i\rangle\}_{i=0,1}$ denote an orthonormal basis of \mathbb{C}^2 , μ : $\{0,1\} \to PSD(\mathbb{C}^2)$ the corresponding basis measurement (i.e., $\mu(i) = |\psi_i\rangle\langle\psi_i|$ for $i\in\{0,1\}$), and \vec{r}_i the Bloch vector of $|\psi_i\rangle\langle\psi_i|$. Show that the probability of obtaining outcome $i\in\{0,1\}$ when measuring ρ using μ is given by $\frac{1}{2}(1+\vec{r}\cdot\vec{r}_i)$. Show that $\vec{r}_0=-\vec{r}_1$. How can you visualize these two facts on the Bloch sphere?
- (d) Now imagine that ρ is an unknown qubit state ρ whose Bloch vector \vec{r} you would like to characterize completely. Consider the following measurement with six outcomes:

$$\mu$$
: $\{x, y, z\} \times \{0, 1\} \rightarrow PSD(\mathbb{C}^2), \quad \mu(\alpha, b) = \frac{I + (-1)^b \sigma_\alpha}{6},$

where $\sigma_x = X$, $\sigma_y = Y$, and $\sigma_z = Z$ are the three Pauli matrices. Show that μ is a valid measurement and that the probabilities of measurement outcomes are given by

$$p(a,b) = \frac{1 + (-1)^b r_a}{6}.$$

How can you visualize this formula on the Bloch sphere? Describe how measuring many copies of ρ by using μ allows for estimating the entries of \vec{r} to arbitrary accuracy.