Quantum Information Theory, Spring 2019

Problem Set 8

due April 1, 2019

- 1. (4 points) Measurements and trace distance: In this problem, you will revisit how to distinguish quantum states by using measurements. Given states $\rho, \sigma \in D(\mathcal{X})$ and a measurement $\mu \colon \Gamma \to \operatorname{Pos}(\mathcal{X})$, let $p, q \in \mathcal{P}(\Gamma)$ denote the corresponding distributions of measurement outcomes.
 - (a) Prove that $||p q||_1 \le ||\rho \sigma||_1$.
 - (b) Show that, for every ρ and σ , there exists a measurement μ such that equality holds.

Hint: In Lecture 1, we discussed how to optimally distinguish ρ and σ .

- 2. (4 points) Holevo χ -quantity: Alice wants to communicate a classical message to Bob by sending a quantum state. She chooses one state $\rho_x \in D(\mathcal{Y})$ for each possible message $x \in \Sigma$ that she may want to send, and Bob chooses a measurement $\mu \colon \Sigma \to \text{Pos}(\mathcal{Y})$ that he uses to decode.
 - (a) Write down a formula for the probability that Bob successfully decodes the message if the message is drawn according to an arbitrary probability distribution $p \in \mathcal{P}(\Sigma)$.

In class, we used the Holevo bound to prove that if this probability is 100% then, necessarily, the Holevo χ -quantity of the ensemble $\{p_x, \rho_x\}$ must be equal to H(p).

- (b) Show that this condition is also sufficient: If $\chi(\{p_x, \rho_x\}) = H(p)$ then there exists a measurement μ such that Bob decodes the message with 100% probability of success.
 - Hint: In class we discussed when an ensemble satisfies $\chi(\{p_x, \rho_x\}) = H(p)$.
- 3. (4 points) Properties of relative entropy: Prove the following two properties of the quantum relative entropy by using its monotonicity property:
 - (a) Entropy increase: $H(\Phi[\rho]) \ge H(\rho)$ for every $\rho \in D(\mathcal{X})$ and unital channel $\Phi \in C(\mathcal{X}, \mathcal{Y})$. Recall that a channel is unital if $\Phi[I_X] = I_Y$.
 - (b) Joint convexity: $D(\sum_{x\in\Sigma} p_x \rho_x \| \sum_{x\in\Sigma} p_x \sigma_x) \leq \sum_{x\in\Sigma} p_x D(\rho_x \| \sigma_x)$, where $(p_x)_{x\in\Sigma}$ is an arbitrary finite probability distribution and $(\rho_x)_{x\in\Sigma}$, $(\sigma_x)_{x\in\Sigma}$ families of states in $D(\mathcal{Y})$. You may assume that the operators ρ_x and σ_x are positive definite.

Hint: In the exercise class, we computed the logarithm of a cq-state.

- 4. (4 points) **Practice:** In this problem, you will compute some relative entropies and verify the monotonicity property. Let $\rho = \frac{1}{4} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 3 \end{pmatrix}$ and $\sigma = \frac{1}{4} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$.
 - (a) Compute the relative entropies $D(\rho \| \sigma)$ and $D(\sigma \| \rho)$.
 - (b) Compute the relative entropies $D(\mathcal{M}[\rho]||\mathcal{M}[\sigma])$ and $D(\mathcal{M}[\sigma]||\mathcal{M}[\rho])$, where the channel $\mathcal{M}[\omega] = \sum_{x} \langle x | \omega | x \rangle |x\rangle \langle x|$ corresponds to a standard basis measurement.