- 1. (4 points) Fidelity inequality: Let \mathcal{X} be a complex Euclidean space with $\dim(\mathcal{X}) \geq 2$.
 - (a) Let $|u_1\rangle, |u_2\rangle, |v\rangle \in \mathcal{X}$ be arbitrary pure quantum states. Show that

$$|\langle u_1|v\rangle|^2 + |\langle u_2|v\rangle|^2 \le 1 + |\langle u_1|u_2\rangle|.$$

Hint: Upper bound the left-hand side by the largest eigenvalue of some rank-2 matrix. Compute this eigenvalue to get the right-hand side.

(b) Let $\rho_1, \rho_2, \sigma \in D(\mathcal{X})$ be arbitrary states. Show that

$$F(\rho_1, \sigma)^2 + F(\rho_2, \sigma)^2 \le 1 + F(\rho_1, \rho_2).$$

- 2. (4 points) Entanglement cost using compression and teleportation: In this exercise you will give an alternative proof for the fact that the entanglement cost is at most the entanglement entropy for a pure state. Let $|\psi\rangle_{XY} \in \mathcal{S}(\mathcal{X} \otimes \mathcal{Y})$ be a pure state.
 - (a) Let ρ_X and ρ_Y be the reduced density matrices and let $\alpha > H(\rho_X) = H(\rho_Y)$. Show, using compression, that for all $\delta > 0$ there exists an LOCC protocol for all but finitely many n which converts $\lfloor \alpha n \rfloor$ Bell pairs into a state $\tilde{\psi}_n$ with $F(\psi^{\otimes n}, \tilde{\psi}_n) > 1 \delta$.

 Hint: Use teleportation!
 - (b) Use (a) to show that for every pure state $E_C(X : Y) \leq H(X)$.
- 3. (3 points) Entanglement rank and the fidelity with the maximally entangled state: Let $\Sigma = \{1, ..., n\}$ and $\mathcal{X} = \mathcal{Y} = \mathbb{C}^{\Sigma}$ be two complex Euclidean spaces of dimension n. Let $\tau_n \in D(\mathcal{X} \otimes \mathcal{Y})$ be the canonical maximally entangled state, i.e., $\tau_n = |\tau_n\rangle\langle\tau_n|$ where

$$|\tau_n\rangle = \frac{1}{\sqrt{n}} \sum_{i=1}^n |i\rangle \otimes |i\rangle.$$

Show that, for any state $\rho \in D(\mathcal{X} \otimes \mathcal{Y})$ of entanglement rank r, $F(\tau_n, \rho)^2 \leq r/n$.

4. (5 points) Entanglement distillation: For any $p \in [0, 1]$, let

$$|\tau(p)\rangle_{\mathsf{AB}} = \sqrt{p}\;|0\rangle\otimes|0\rangle + \sqrt{1-p}\;|1\rangle\otimes|1\rangle$$

be a two-qubit state shared between Alice and Bob, and let $|\tau\rangle_{AB} = |\tau(1/2)\rangle_{AB}$ denote the maximally entangled state. In the following, we always assume that Alice and Bob are given $|\tau(p)\rangle_{AB}^{\otimes n}$, for some $n \geq 1$ and $0 \leq p \leq 1/2$, as their input.

(a) Using LOCC, they would like to distill one perfect copy of $|\tau(q)\rangle_{AB}$ that is as close as possible to the maximally entangled state $|\tau\rangle_{AB}$. Derive a formula for the largest possible $q \leq 1/2$ they can get and express it as an explicit function of p and n. What is the maximal fidelity their output state $|\tau(q)\rangle_{AB}$ can have with the desired target state $|\tau\rangle_{AB}$, i.e., what is

$$\max_{q} F(|\tau(q)\rangle, |\tau\rangle),$$

where the maximum is over all possible achievable q?

- (b) \blacksquare Take p = 0.1 and plot this as a function of n. Determine the smallest n such that $|\tau(p)\rangle_{\mathsf{AB}}^{\otimes n}$ can be perfectly transformed into $|\tau\rangle_{\mathsf{AB}}$ by LOCC.
- (c) This time Alice and Bob want to extract more entanglement. That is, they want to perfectly obtain the state

$$|\tau_d\rangle_{\mathsf{A}'\mathsf{B}'} = \frac{1}{\sqrt{d}} \sum_{i=1}^d |i\rangle_{\mathsf{A}'} |i\rangle_{\mathsf{B}'},$$

for some $d \geq 2$. Derive a formula for the largest possible d as a function of p and n.

- (d) \blacksquare Take p = 0.1 and plot this as a function of n. Determine the smallest n such that $|\tau(p)\rangle_{\mathsf{AB}}^{\otimes n}$ can be perfectly transformed into three copies of $|\tau\rangle_{\mathsf{AB}}$ by LOCC.
- (e) \blacksquare Take p = 0.2 and n = 2. What is the largest possible fidelity their output state can have with $|\tau_3\rangle_{AB}$?