1. (4 points) A formula for the trace distance between pure states: Consider two pure states $\rho = |\psi\rangle\langle\psi|$ and $\sigma = |\phi\rangle\langle\phi|$ on a Hilbert space \mathcal{X} . Show that

$$\frac{1}{2}\|\rho - \sigma\|_1 = \sqrt{1 - |\langle \psi | \phi \rangle|^2}.$$

Hint: Can you reduce to the situation where $\mathcal{X} = \mathbb{C}^2$?

2. (4 points) Uncertainty relation: Given a measurement μ : $\{0,1\} \to Pos(\mathcal{X})$ with two outcomes and a state $\rho \in D(\mathcal{X})$, define the bias by

$$\beta(\rho) = \left| \operatorname{tr}[\mu(0)\rho] - \operatorname{tr}[\mu(1)\rho] \right|.$$

Note that $\beta=1$ iff the outcome is deterministic and $\beta=0$ iff both outcomes are equally likely. In class, we discussed how to measure a qubit in the standard basis and in the Hadamard basis. Let $\beta_{\rm std}$ and $\beta_{\rm Had}$ denote the bias for these two measurements.

(a) Show that, for every qubit state ρ ,

$$\beta_{\rm std}(\rho) = |{\rm tr}[Z\rho]|$$
 and $\beta_{\rm Had}(\rho) = |{\rm tr}[X\rho]|$,

where X and Z are two of the three Pauli matrices defined in class.

(b) Show that, for every qubit state ρ ,

$$\beta_{\rm std}(\rho) + \beta_{\rm Had}(\rho) \le \sqrt{2}.$$

Why is it appropriate to call this an *uncertainty relation*?

- (c) Find a state ρ for which the uncertainty relation is saturated (i.e., an equality).
- 3. (4 points) No cloning: In this problem, you will show that it is not possible to perfectly clone an unknown state even if we restrict to classical or to pure states. Let $\mathcal{X} = \mathbb{C}^{\Sigma}$ be a qubit, i.e., $\Sigma = \{0, 1\}$. We say that a channel $\Phi \in C(\mathcal{X}, \mathcal{X} \otimes \mathcal{X})$ clones a state $\rho \in D(\mathbb{C}^2)$ if $\Phi[\rho] = \rho \otimes \rho$.
 - (a) Show that there exists no channel that clones all classical states ρ .
 - (b) Show that there exists no channel that clones all pure states ρ .
 - (c) Which states are both pure and classical? Find a channel Φ that clones all of them.

Hint: For (a) and (b), use linearity and the cloning property to arrive at a contradiction.

- 4. (4 points) Practice: The file pset1.txt on the course homepage contains the matrix representation (row by row) of a state ρ on $\mathcal{X} = \mathbb{C}^{\Sigma}$, where $\Sigma = \{0, \dots, d-1\}$.
 - (a) What is the dimension d of the quantum system that ρ is a state on?
 - (b) Compute the largest eigenvalue of ρ . Is ρ a pure state?
 - (c) Let σ be the state obtained by applying the depolarizing channel $\Phi[\rho] = 0.3\rho + 0.7\frac{I}{d}$ to ρ . What is the largest eigenvalue of σ ?
 - (d) Compute the trace distance $\|\sigma \frac{I}{d}\|_1$ between σ and the maximally mixed state on \mathcal{X} .
 - (e) Imagine measuring σ in the standard basis. Which outcome $x \in \Sigma$ has smallest probability?

Hint: On the course homepage you can find instructions for loading the matrix.