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Problem 1 (Pure state entanglement, 3 points).
In class we observed that a pure state ∣ΨAB⟩ ∈ HA ⊗HB is unentangled if and only if its reduced
density operators ρA and ρB are pure states. Here you will generalize this observation and show
that the maximal fidelity squared between ∣ΨAB⟩ and any product state is given by the largest
eigenvalue of ρA, denoted λmax(ρA). That is, show that

max
∥φA∥=∥ψB∥=1

∣⟨ΨAB ∣φA ⊗ ψB⟩∣
2
= λmax(ρA).

Hint: Use the Schmidt decomposition discussed in Lecture 8.

Problem 2 (De Finetti and mean field theory, 4 points).
In this exercise you will explore the consequences of the quantum de Finetti theorem for mean
field theory. Consider a Hermitian operator h on Cd ⊗ Cd and the corresponding mean-field
Hamiltonian, i.e., the operator

H =
1

n − 1
∑
i≠j

hi,j

on (Cd)⊗n, where each term hi,j acts by the operator h on subsystems i and j and by the identity
operator on the remaining subsystems (e.g., h1,2 = h⊗ I⊗(n−2)).

(a) Show that the eigenspaces of H are invariant subspaces for the action of the symmetric
group.

Now assume that the eigenspace with minimal eigenvalue (the so-called ground space) is nonde-
generate and spanned by some ∣E0⟩, with corresponding eigenvalue E0. Then part (a) implies that
Rπ ∣E0⟩ = χ(π) ∣E0⟩ for some function χ. This function necessarily satisfies χ(πτ) = χ(π)χ(τ).

(b) Show that χ(i↔ j) = χ(1↔ 2) for all i ≠ j. Conclude that ∣E0⟩ is either a symmetric tensor
or an antisymmetric tensor.

Hint: First show that χ(πτπ−1) = χ(τ).

If n > d, then there exist no nonzero antisymmetric tensors. Thus, in the so-called thermodynamic
limit of large n, the ground state ∣E0⟩ is in the symmetric subspace Symn(Cd) and so the quantum
de Finetti theorem is applicable.

(c) Show that, for large n, the energy density in the ground state can be well approximated by
minimizing over tensor power states. That is, show that

E0

n
≈ min

∣ψ⟩
⟨ψ⊗2∣h∣ψ⊗2⟩ =

1

n
min
∣ψ⟩

⟨ψ⊗n∣H ∣ψ⊗n⟩ .

Hint: The following fact about the trace distance will be useful. If ρ, σ are density operators and
O an observable, then ∣tr[Oρ] − tr[Oσ]∣ ≤ 2∥O∥∞T (ρ, σ), where ∥O∥∞ ∶= max∥φ∥=1∣⟨φ∣O∣φ⟩∣.

This justifies the folklore that “in the mean field limit the ground state has the form ∣ψ⟩⊗∞”.
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Problem 3 (The antisymmetric state, 5 points).
In class, we discussed the quantum de Finetti theorem for the symmetric subspace. It asserts
that the reduced density operators ρA1...Ak

of a state on Symk+n(CD) are
√
kD/n close in trace

distance to a separable state (in fact, to a mixture of tensor power states).
The goal of this exercise is to show that some kind of dependence on the dimension D is

unavoidable in the statement of the theorem. To start, consider the Slater determinant

∣S⟩A1...Ad
= ∣1⟩ ∧ ⋅ ⋅ ⋅ ∧ ∣d⟩ ∶=

√
1

d!
∑
π∈Sd

sign(π) ∣π(1)⟩ ⊗ . . .⊗ ∣π(d)⟩ ∈ (Cd)⊗d.

We define the antisymmetric state on Cd ⊗Cd by tracing out all but two subsystems,

ρA1A2 = trA3...Ad
[∣S⟩ ⟨S∣] .

(a) Let F = R1↔2 denote the swap operator on (Cd)⊗2. Prove the following identity, which is
known as the swap trick :

tr[F (σ ⊗ γ)] = tr[σγ]

(b) Show that T (ρA1A2 , σA1A2) ≥
1
2 for all separable states σA1A2 .

Hint: Consider the POVM element Q = Π2 (i.e., the projector onto the symmetric subspace).

Thus you have shown that the antisymmetric state is far from any separable state. However,
note that ∣S⟩ is not in the symmetric subspace.

(c) Show that ∣S⟩⊗2 ∈ Symd(Cd ⊗Cd), while ρ⊗2A1A2
is likewise far away from any separable state.

Conclude that the quantum de Finetti theorem must have some dimension dependence.

Hint: ∣S⟩⊗2 is a state of 2d quantum systems that we might label A1 . . .AdA
′
1 . . .A

′
d (the

unprimed systems refer to the first copy of ∣S⟩ and the primed to the second). Let the
permutation group Sd act by simultaneously permuting unprimed and primed systems and
show that ∣S⟩⊗2 is in the corresponding symmetric subspace. Similarly, ρ⊗2 is an operator on
A1A2A

′
1A

′
2. How do you need to partition the systems so that ρ⊗2 is far from being separable?

Problem 4 (Classical data compression, 4 points).
In this exercise you will show that the Shannon entropy h(p) = −p log p − (1 − p) log(1 − p) is
the optimal compression rate for the coin flip problem discussed in class. Assume that Alice
compresses her random sequence of n coin flips by applying a function En∶ {H,T}n → {0,1}⌊nR⌋,
and Bob decompresses by applying a corresponding function Dn∶ {0,1}⌊nR⌋ → {H,T}n.

(a) Which are the coin flip sequences that are transmitted correctly? Find an upper bound on
their cardinality in terms of R.

(b) Show that, if R < h(p), then the probability of success tends to zero for large n.

Hint: Distinguish between typical and atypical sequences of coin flips.
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The following exercises are offered as additional opportunity for practice. They will not be graded.

Optional Problem 5 (Entanglement witness for the ebit).
Recall that an entanglement witness for a quantum state ρAB is an observable OAB such
that tr[OAB ρAB] > 0, while tr[OAB σAB] ≤ 0 for every separable state σAB. Construct an
entanglement witness for the ebit state ∣Φ+

AB⟩ = 1√
2
(∣00⟩ + ∣11⟩).

Hint: Use the claim of Problem 1 to your advantage!

Optional Problem 6 (Trace distance and observables). In this problem, you will show that
density operators ρ and σ with small trace distance T (ρ, σ) have similar expectation values.

(a) Show that, for every two Hermitian operators M and N , ∣tr[MN]∣ ≤ ∥M∥1∥N∥∞. Here,
∥M∥1 is the trace norm that you know from class (i.e., the sum of absolute values of the
eigenvalues of M) and ∥N∥∞ ∶= max∥φ∥=1∣⟨φ∣N ∣φ⟩∣ is the operator norm (which can also be
defined as the maximal absolute value of the eigenvalues of N).

(b) Conclude that, for every observable O, ∣tr[ρO] − tr[σO]∣ ≤ 2 ∥O∥∞ T (ρ, σ).

This confirms the hint given in Problem 2, part (c).

(c) Find a (nonzero) observable for which the bound in part (b) is an equality.
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