# Symmetry and Quantum Information February 26, 2018 Problem Set 3 Michael Walter, University of Amsterdam due March 6, 2018

# **Problem 1** (Irreducible representation of $S_3$ , 2 points).

In Lecture 5, we discussed that  $\mathcal{H} = \{ \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \in \mathbb{C}^3 : \alpha + \beta + \gamma = 0 \}$  is a representation of  $S_3$ , with the  $R_{\pi}$  acting by permuting the coordinates. Show that this representation is irreducible.

## Problem 2 (Schur's lemma, 3 points).

In this problem, you can practice Schur's lemma. The two parts are independent of each other.

(a) Let  $\mathcal{H}$  and  $\mathcal{H}'$  be irreducible unitary representations and  $J:\mathcal{H}\to\mathcal{H}'$  an intertwiner. Show that J is proportional to a unitary operator.

Hint: Show that  $J^{\dagger}$  is also an intertwiner.

This strengthens part (i) of Schur's lemma, which asserted that either J = 0 or J is invertible.

(b) Let G be a commutative group (i.e., gh = hg for all  $g, h \in G$ ). Show that any irreducible representation of G is necessarily one-dimensional.

## **Problem 3** (Symmetries imply normal form, 3 points).

In this problem, you will show that quantum states that commute with U or  $U^{\otimes 2}$  are tightly constrained by these symmetries.

First, recall that the single-qubit Hilbert space  $\mathbb{C}^2$  is an irreducible representation of U(2).

(a) Show that if  $\rho$  is a density operator on  $\mathbb{C}^2$  such that  $[\rho, U] = 0$  for every unitary  $U \in U(2)$ , then  $\rho = I/2$ .

From class you know that the two-qubit Hilbert space  $\mathbb{C}^2 \otimes \mathbb{C}^2$  is not irreducible, but decomposes into two irreducible representations of U(2): the symmetric subspace and a one-dimensional representation spanned by the singlet  $|\Psi^-\rangle = \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle)$ .

(b) Show that if  $\rho$  is a density operator on  $\mathbb{C}^2 \otimes \mathbb{C}^2$  such that  $[\rho, U^{\otimes 2}] = 0$  for every  $U \in U(2)$ , then there exists  $\rho \in [0, 1]$  such that

$$\rho = p \tau_{\text{triplet}} + (1 - p) \tau_{\text{singlet}}.$$

Here,  $\tau_{\text{triplet}} = \Pi_2/3$ ,  $\tau_{\text{singlet}} = |\Psi^-\rangle \langle \Psi^-|$ . As always,  $\Pi_2$  denotes the projector onto Sym<sup>2</sup>( $\mathbb{C}^2$ ). Hint: Use Schur's lemma.

### **Problem 4** (Post-measurement state for density operators, 3 points).

Consider a quantum system described by an ensemble of pure quantum states  $\{p_i, |\psi_i\rangle\}$ , with corresponding density operator  $\rho$ . Suppose that we perform a projective measurement  $\{P_x\}_{x\in\Omega}$  on the system. In this problem, you will derive a description of the post-measurement states.

- (a) Verify that  $tr[\rho P_x]$  equals the probability that the measurement outcome is x.
- (b) Given that the outcome is x, compute the probability that the original state was  $|\psi_i\rangle$ . Hint: Use Bayes' theorem.
- (c) Given that the outcome is x, determine the ensemble of post-measurement states, and verify that the corresponding density operator is  $P_x \rho P_x / \text{tr}[\rho P_x]$ .