
Symmetry and Quantum Information February 27, 2018

The formalism of quantum information theory
Handout Michael Walter, University of Amsterdam

This handout summarizes the formalism of quantum information theory that we have devel-
oped in this course, starting from the axioms of quantum mechanics.

(A) Systems: To every quantum mechanical system, we associate a Hilbert space H. For a
joint system composed of two subsystems A and B, with Hilbert spaces HA and HB , the
Hilbert space is the tensor product HAB ∶= HA ⊗HB.

(B) States: A density operator ρ is an operator on H that satisfies (i) ρ ≥ 0 and (ii) tr[ρ] = 1.
Any density operator describes the state of a quantum mechanical system. If the rank
of ρ is one (i.e., of the form ρ = ψ ∶= ∣ψ⟩ ⟨ψ∣ for some unit vector ∣ψ⟩ ∈ H) then we say that
ρ is a pure state. Otherwise, ρ is called a mixed state. An ensemble {pi, ρi} of quantum
states can be described by the density operator ρ = ∑i piρi.

If ρAB is the state of a joint system, the state of its subsystems can be described by
the reduced density matrices ρA = trB[ρAB] and ρB = trA[ρAB]. The latter states can
be mixed even if ρAB is pure. Conversely, any density operator ρA has a purification
ρAB = ∣ψAB⟩ ⟨ψAB ∣ (see Lectures 7 and 8).

(C) Unitary dynamics: Given a unitary operator U on H, the transformation ρ ↦ UρU †

is in principle physical. In other words, the laws of quantum mechanics allow a way of
evolving the quantum system for some finite time such that, when we start in an arbitrary
initial state ρ, the final state is UρU †. If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state, then this corresponds
to ∣ψ⟩ ↦ U ∣ψ⟩.

(D) Measurements: A POVM measurement {Qx}x∈Ω with outcomes in some finite set Ω is
a collection of operators on H that satisfies (i) Qx ≥ 0 and (ii) ∑x∈ΩQx = I. Born’s rule
asserts that the probability of outcome x in state ρ is given by the Born rule:

Prρ(outcome x) = tr [ρQx] .

If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state, then this can also be written as ⟨ψ∣Qx∣ψ⟩. A POVM
measurement that has precisely two outcomes is called a binary POVM measurement, and
it has the form {Q, I −Q}, hence is specified by a single POVM element 0 ≤ Q ≤ I. We
can also consider POVMs with a continuum of possible outcomes (see Lecture 4).

We say that {Px} is a projective measurement if {Px}x∈Ω is a POVM where the Px are
projections that are pairwise orthogonal (i.e., QxQy = δx,yQx). If Ω ⊆ R, then the data
{Px}x∈Ω is equivalent to specifying a Hermitian operator with spectral decomposition
O = ∑x xPx, called an observable. If the outcome of a projective measurement is x then
the state of the system “collapses” into the post-measurement state

ρ′ =
PxρPx
tr[Pxρ]

If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state, then ρ′ = ∣ψ′⟩ ⟨ψ′∣, where ∣ψ′⟩ = Px ∣ψ⟩ /∥Px ∣ψ⟩∥.

Any POVM can be implemented using projective measurements on a larger system (see
Lecture 2).
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(E) Operations on subsystems: Consider a joint system with Hilbert spaceHAB = HA⊗HB .
If we want to perform a unitary UA on the subsystem modeled byHA, then the appropriate
unitary on the joint system is UA ⊗ IB. Similarly, if {QA,x}x∈Ω is a POVM measurement
on HA then the appropriate POVM measurement on the joint system is {QA,x ⊗ IB}x∈Ω.

The standard formalism of quantum information theory includes two further notions that we
did not discuss in this course: Quantum channels model general evolutions that can be obtained
by composing unitary dynamics, adding ancillas, and taking partial traces. Quantum instruments
Can be thought of as implementations of POVM measurements that not only describe the
statistics of outcomes but also model the post-measurement state.
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