PHYSICS 491: Symmetry and Quantum Information Problem Set 4 Michael Walter, Stanford University optional

Problem 1 (Schur-Weyl duality).

Your goal in this exercise is to concretely identify irreducible representations of U(2) and S_n in the n-qubit Hilbert space. Let j be such that $\frac{n}{2} - j$ is a nonnegative integer.

(a) Show that the subspace

$$\mathcal{H}_{n,j} \coloneqq \left\{ |\phi\rangle \otimes |\psi^{-}\rangle^{\otimes \frac{n}{2} - j} \,, \ |\phi\rangle \in \operatorname{Sym}^{2j}(\mathbb{C}^{2}) \right\} \subseteq (\mathbb{C}^{2})^{\otimes n}$$

is an irreducible U(2)-representation equivalent to $V_{n,j}$. Here, $|\psi^-\rangle = \frac{1}{\sqrt{2}}(|10\rangle - |01\rangle)$ is the singlet state. How can you obtain further U(2)-representations in $(\mathbb{C}^2)^{\otimes n}$ equivalent to $V_{n,j}$?

- (b) Now construct an irreducible S_n -representation in $(\mathbb{C}^2)^{\otimes n}$ that is equivalent to $W_{n,j}$. How can you obtain further S_n -representations in $(\mathbb{C}^2)^{\otimes n}$ equivalent to $W_{n,j}$?
- (c) Using part (b), confirm that the definition of $W_{\square\square}$ and W_{\square} via Schur-Weyl duality is equivalent to our original definition in lecture 3.

Problem 2 (PPT criterion).

In this exercise, you will study a simple, highly useful entanglement criterion. Given an operator M_{AB} on $\mathcal{H}_A \otimes \mathcal{H}_B$, we define its *partial transpose* as the operator $M_{AB}^{T_B}$ with matrix elements

$$\langle a, b | M_{AB}^{T_B} | a', b' \rangle = \langle a, b' | M_{AB} | a', b \rangle.$$

Note that this definition depends on the choice of basis for \mathcal{H}_B (but not of the basis for \mathcal{H}_A).

- (a) Show that $\operatorname{tr} M_{AB}^{T_B} = \operatorname{tr} M_{AB}$.
- (b) Observe that if $M_{AB} = X_A \otimes Y_B$ then $M_{AB}^{T_B} = X_A \otimes Y_B^T$ and argue that this uniquely determines the partial transpose.

In particular, we can consider the partial transpose of a density operator ρ_{AB} .

(c) Show that if ρ_{AB} is separable then $\rho_{AB}^{T_B} \ge 0$.

You thus obtain the so-called *PPT criterion*, short for positive partial transpose criterion: If the partial transpose $\rho_{AB}^{T_B}$ is not positive semidefinite then ρ_{AB} must be entangled.

- (d) Verify using the PPT criterion that the ebit $|\Psi_2^+\rangle$ is entangled.
- (e) Consider the family of isotropic two-qubit states,

$$\rho_{AB}(p) \coloneqq p \, \tau_{\text{sym}} + (1-p)\tau_{\text{anti}},$$

where τ_{sym} denotes the maximally mixed state on the symmetric subspace of two qubits and $\tau_{\text{anti}} = |\psi^-\rangle \langle \psi^-|$ the singlet state. For which values of $p \in [0, 1]$ does the PPT criterion establish entanglement?

In general, the PPT criterion is only a sufficient, but not a necessary criterion for entanglement. If $\dim H_A \otimes H_B > 6$, then there exist entangled states with a positive semidefinite partial transpose.

Problem 3 (Dual representations).

This problem introduces the concept of a dual representation. To start, consider a representation \mathcal{H} of some group G, with operators $\{R_g\}$. Let \mathcal{H}^* denote the dual Hilbert space, whose elements are "bras" $\langle \phi |$, and define operators R_g^* on \mathcal{H}^* by $R_g^* \langle \phi | := \langle \phi | R_{g^{-1}}$.

- (a) Verify that the operators $\{R_g^*\}$ turn \mathcal{H}^* into a representation of G. This representation is called the dual representation of \mathcal{H} .
- (b) Show that if \mathcal{H} is irreducible then \mathcal{H}^* is irreducible.

A representation \mathcal{H} is called *self-dual* if $\mathcal{H}^* \cong \mathcal{H}$.

- (c) Show that the irreducible representations of SU(2), and hence all its representations, are self-dual.
- (d) Show that any representation of S_3 is self-dual.

It is true more generally that any representation of S_n is self-dual.

Problem 4 (Many copies of a bipartite pure state).

In this exercise, we will revisit the universal entanglement concentration protocol discussed in lecture 8. Let $|\phi\rangle_{AB}$ be an arbitrary state of two qubits. Then $|\phi\rangle_{AB}^{\otimes n}$ is a vector in the Hilbert space

$$(\mathbb{C}^2)^{\otimes n} \otimes (\mathbb{C}^2)^{\otimes n} \cong \left(\bigoplus_{j} V_{n,j}^A \otimes W_{n,j}^A\right) \otimes \left(\bigoplus_{j'} V_{n,j'}^B \otimes W_{n,j'}^B\right) \cong \bigoplus_{j,j'} V_{n,j}^A \otimes V_{n,j'}^B \otimes W_{n,j}^A \otimes W_{n,j'}^B.$$

The superscripts A refer to the Schur-Weyl decomposition of the n A-systems, and likewise for B. Now consider the representation of S_n on $W_{n,j}^A \otimes W_{n,j'}^B$ given by the operators $R_{\pi}^{(n,j)} \otimes R_{\pi}^{(n,j')}$. A vector in $W_{n,j}^A \otimes W_{n,j'}^B$ is called an *invariant vector* if it is left unchanged by all these operators.

- (a) Show that if $j \neq j'$ then $W_{n,j}^A \otimes W_{n,j'}^B$ contains no nonzero invariant vector for S_n .
- (b) Show that $W_{n,j}^A \otimes W_{n,j}^B$ contains a unique invariant vector (up to scalar multiples). Moreover, show that this vector is a maximally entangled state, which we denote by $|\Phi^+\rangle_{W_{n,j}^AW_{n,j}^B}$.

Hint: Use problem 3 and Schur's lemma.

(c) Conclude that $|\psi\rangle_{AB}^{\otimes n}$ can be written in the form

$$|\psi\rangle_{AB}^{\otimes n} \cong \sum_{j} \sqrt{p_{j}} \, |\Psi\rangle_{V_{n,j}^{A} V_{n,j}^{B}} \otimes |\Phi^{+}\rangle_{W_{n,j}^{A} W_{n,j}^{B}} \,,$$

where $p_j = \text{tr}[P_j \rho_A^{\otimes n}]$ and where the $|\Psi\rangle_{V_{n,j}^A V_{n,j}^B}$ are suitable pure states in $V_{n,j}^A \otimes V_{n,j}^B$.

(d) Use part (c) to analyze the universal entanglement concentration protocol discussed in class.

Problem 5 (The controlled swap gate).

In this exercise, you will decompose the controlled swap (CSWAP) gate into a quantum circuit that consists of single-qubit and two-qubit gates only.

(a) Compute the three-qubit unitary that corresponds to the following quantum circuit:

Here, V = (1 $_i$) is a square root of the Z-gate.

The unitary from part (a) is known as the Toffoli gate.

(b) Show that the controlled swap gate can be implemented by a sequence of Toffoli gates.