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Problem Set 4
Michael Walter, Stanford University optional

Problem 1 (Schur-Weyl duality).
Your goal in this exercise is to concretely identify irreducible representations of U(2) and Sn in the
n-qubit Hilbert space. Let j be such that n

2 − j is a nonnegative integer.

(a) Show that the subspace

Hn,j ∶= {∣φ⟩ ⊗ ∣ψ−⟩⊗
n
2
−j
, ∣φ⟩ ∈ Sym2j(C2)} ⊆ (C2)⊗n

is an irreducible U(2)-representation equivalent to Vn,j . Here, ∣ψ−⟩ = 1√
2
(∣10⟩ − ∣01⟩) is the

singlet state. How can you obtain further U(2)-representations in (C2)⊗n equivalent to Vn,j?

(b) Now construct an irreducible Sn-representation in (C2)⊗n that is equivalent to Wn,j . How can
you obtain further Sn-representations in (C2)⊗n equivalent to Wn,j?

(c) Using part (b), confirm that the definition ofW andW via Schur-Weyl duality is equivalent

to our original definition in lecture 3.

Problem 2 (PPT criterion).
In this exercise, you will study a simple, highly useful entanglement criterion. Given an operator
MAB on HA ⊗HB, we define its partial transpose as the operator MTB

AB with matrix elements

⟨a, b∣MTB
AB ∣a′, b′⟩ = ⟨a, b′∣MAB ∣a′, b⟩ .

Note that this definition depends on the choice of basis for HB (but not of the basis for HA).

(a) Show that trMTB
AB = trMAB.

(b) Observe that if MAB =XA ⊗ YB then MTB
AB =XA ⊗ Y T

B and argue that this uniquely determines
the partial transpose.

In particular, we can consider the partial transpose of a density operator ρAB.

(c) Show that if ρAB is separable then ρTBAB ≥ 0.

You thus obtain the so-called PPT criterion, short for positive partial transpose criterion: If the
partial transpose ρTBAB is not positive semidefinite then ρAB must be entangled.

(d) Verify using the PPT criterion that the ebit ∣Ψ+
2 ⟩ is entangled.

(e) Consider the family of isotropic two-qubit states,

ρAB(p) ∶= p τsym + (1 − p)τanti,

where τsym denotes the maximally mixed state on the symmetric subspace of two qubits and
τanti = ∣ψ−⟩ ⟨ψ−∣ the singlet state. For which values of p ∈ [0,1] does the PPT criterion establish
entanglement?
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In general, the PPT criterion is only a sufficient, but not a necessary criterion for entanglement. If
dimHA ⊗HB > 6, then there exist entangled states with a positive semidefinite partial transpose.

Problem 3 (Dual representations).
This problem introduces the concept of a dual representation. To start, consider a representation H
of some group G, with operators {Rg}. Let H∗ denote the dual Hilbert space, whose elements are
“bras” ⟨φ∣, and define operators R∗

g on H∗ by R∗
g ⟨φ∣ ∶= ⟨φ∣Rg−1 .

(a) Verify that the operators {R∗
g} turn H∗ into a representation of G. This representation is called

the dual representation of H.

(b) Show that if H is irreducible then H∗ is irreducible.

A representation H is called self-dual if H∗ ≅ H.

(c) Show that the irreducible representations of SU(2), and hence all its representations, are self-dual.

(d) Show that any representation of S3 is self-dual.

It is true more generally that any representation of Sn is self-dual.

Problem 4 (Many copies of a bipartite pure state).
In this exercise, we will revisit the universal entanglement concentration protocol discussed in
lecture 8. Let ∣φ⟩AB be an arbitrary state of two qubits. Then ∣φ⟩⊗nAB is a vector in the Hilbert space

(C2)⊗n ⊗ (C2)⊗n ≅
⎛
⎝⊕j

V A
n,j ⊗WA

n,j

⎞
⎠
⊗

⎛
⎝⊕j′

V B
n,j′ ⊗WB

n,j′
⎞
⎠
≅⊕
j,j′
V A
n,j ⊗ V B

n,j′ ⊗WA
n,j ⊗WB

n,j′ .

The superscripts A refer to the Schur-Weyl decomposition of the n A-systems, and likewise for B.
Now consider the representation of Sn on WA

n,j ⊗WB
n,j′ given by the operators R(n,j)π ⊗R(n,j

′)
π . A

vector in WA
n,j ⊗WB

n,j′ is called an invariant vector if it is left unchanged by all these operators.

(a) Show that if j ≠ j′ then WA
n,j ⊗WB

n,j′ contains no nonzero invariant vector for Sn.

(b) Show that WA
n,j ⊗WB

n,j contains a unique invariant vector (up to scalar multiples). Moreover,
show that this vector is a maximally entangled state, which we denote by ∣Φ+⟩WA

n,jW
B
n,j

.

Hint: Use problem 3 and Schur’s lemma.

(c) Conclude that ∣ψ⟩⊗nAB can be written in the form

∣ψ⟩⊗nAB ≅ ∑
j

√
pj ∣Ψ⟩V A

n,jV
B
n,j

⊗ ∣Φ+⟩WA
n,jW

B
n,j
,

where pj = tr[Pjρ⊗nA ] and where the ∣Ψ⟩V A
n,jV

B
n,j

are suitable pure states in V A
n,j ⊗ V B

n,j .

(d) Use part (c) to analyze the universal entanglement concentration protocol discussed in class.

Problem 5 (The controlled swap gate).
In this exercise, you will decompose the controlled swap (CSWAP) gate into a quantum circuit that
consists of single-qubit and two-qubit gates only.
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(a) Compute the three-qubit unitary that corresponds to the following quantum circuit:

● ● ●

● ●

H V V † V H

Here, V = ( 1
i ) is a square root of the Z-gate.

The unitary from part (a) is known as the Toffoli gate.

(b) Show that the controlled swap gate can be implemented by a sequence of Toffoli gates.
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