
PHYSICS 491: Symmetry and Quantum Information April 23, 2017

Problem Set 3
Michael Walter, Stanford University due May 4, 2017

Problem 1 (The antisymmetric state).
In class, we discussed the quantum de Finetti theorem for the symmetric subspace. It asserts that
the reduced density matrices ρA1...Ak

of a state on Symn(Cd) are
√
kd/(n − k) close in trace distance

to a separable state (in fact, to a mixture of tensor power states).
The goal of this exercise is to show that a dependence on the dimension d is unavoidable. To

start, consider the Slater determinant

∣S⟩A1...Ad
= ∣1⟩ ∧ ⋅ ⋅ ⋅ ∧ ∣d⟩ ∶=

√
1

d!
∑
π∈Sd

sign(π) ∣π(1)⟩ ⊗ . . .⊗ ∣π(d)⟩ ∈ (Cd)⊗d.

We define the antisymmetric state on Cd ⊗Cd by tracing out all but two subsystems,

ρA1A2 = trA3...Ad
[∣S⟩ ⟨S∣] .

(a) Show that T (ρA1A2 , σA1A2) ≥ 1
2 for all separable states σA1A2 .

Hint: Consider the POVM element Q = Π2 (i.e., the projector onto the symmetric subspace).

Thus you have shown that the antisymmetric state is far from any separable state. However, note
that ∣S⟩ is not in the symmetric subspace.

(b) Show that ∣S⟩⊗2 ∈ Symd(Cd ⊗ Cd), while ρ⊗2 is likewise far away from any separable state.
Conclude that the quantum de Finetti theorem must have a dependence on the dimension d.

Problem 2 (De Finetti and mean field theory).
In this exercise you will explore the consequences of the quantum de Finetti theorem for mean field
theory. Consider an operator h on Cd ⊗Cd and the corresponding mean-field Hamiltonian

H = 1

n − 1
∑
i≠j
hi,j

on (Cd)⊗n, where each term hi,j acts by the operator h on subsystems i and j and by the identity
operator on the remaining subsystems (e.g., h1,2 = h⊗ 1⊗(n−2)).

(a) Show that the eigenspaces of H are invariant subspaces for the action of the symmetric group.

Now assume that the ground space is nondegenerate, and spanned by some ∣E0⟩. Then part (a) implies
that Rπ ∣E0⟩ = χ(π) ∣E0⟩ for some function χ. This function necessarily satisfies χ(πτ) = χ(π)χ(τ).

(b) Show that χ(i↔ j) = χ(1↔ 2) for all i ≠ j. Conclude that ∣E0⟩ is either a symmetric tensor or
an antisymmetric tensor.

Hint: First show that χ(πτπ−1) = χ(τ).
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If n > d, then there exist no nonzero antisymmetric tensors. Thus, in the thermodynamic limit
of large n, the ground state ∣E0⟩ is in the symmetric subspace Symn(Cd) and so the quantum de
Finetti theorem is applicable.

(c) Show that, for large n, the energy density in the ground state can be well approximated by

E0

n
≈ min
∣ψ⟩

⟨ψ⊗2∣h∣ψ⊗2⟩ = 1

n
min
∣ψ⟩

⟨ψ⊗n∣H ∣ψ⊗n⟩ .

This justifies the folklore that “in the mean field limit the ground state has the form ∣ψ⟩⊗∞”.

Problem 3 (Universal quantum data compression).
In class, we discussed a quantum compression protocol that works for all qubit ensembles {px, ∣ψx⟩}
for which the associated density operator ρ = ∑x px ∣ψx⟩ ⟨ψx∣ has given eigenvalues {p,1 − p}.

Your task in this exercise is to design a universal compression protocol that works for all qubit
ensembles with S(ρ) < S0, where S0 > 0 is a given target compression rate.

(a) Show that, for all S0 > 0, there exist projectors P̃n on subspaces H̃n of (C2)⊗n such that:

(i) For all density operators ρ with S(ρ) < S0, tr [P̃nρ⊗n] → 1 as n→∞,

(ii) The dimension of H̃n is at most 2n(S0+δ(n)) for some function δ with δ(n) → 0 as n→∞.

Hint: Use the spectrum estimation projectors Pj in a clever way.

(b) Use the projectors P̃n to construct a compression protocol with compression rate S0 that works
for all qubit ensembles with S(ρ) < S0 (i.e., show that in the limit of large block length n, the
average squared overlap between the original state and the decompressed state goes to one).

Hint: Follow the same construction as in lecture 7.

Bonus Problem 4 (Bounds on entropies).
In this exercise, you will prove two bounds that we used in class. Let 0 ≤ p, q ≤ 1. The first bound
concerns the binary entropy function h(p) = −p log p − (1 − p) log(1 − p).

(a) Consider the function η(x) = −x logx and assume that ∣p − q∣ ≤ 1
2 . Show that

∣η(p) − η(q)∣ ≤ η(∣p − q∣), (3.1)

and deduce the following special case of Fannes’ inequality :

∣h(p) − h(q)∣ ≤ 2η(∣p − q∣)

The second bound concerns the binary relative entropy δ(p∥q) = p log p
q + (1 − p) log 1−p

1−q .

(b) Derive the following special case of Pinsker’s inequality :

δ(p∥q) ≥ 2

ln 2
(p − q)2.

Hint: Remember that logx = lnx/ ln 2 is the logarithm to the base two.
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Bonus Problem 5 (Schur-Weyl duality).
In class, we discussed an important mathematical result known as Schur-Weyl duality. The goal of
this exercise is to supply some last details and conclude its proof.

Recall that we decomposed the Hilbert space of n qubits as a representation of U(2). Using the
same notation as in class,

(C2)⊗n ≅⊕
j

Vn,j ⊗Cm(n,j),

such that, for all X ∈ U(2),
X⊗n ≅⊕

j

T
(n,j)
X ⊗ 1Cm(n,j) , (3.2)

and we discussed that this formula can be extended to arbitrary operators X on C2.

(a) Show that the representation operators Rπ for π ∈ Sn have the form

Rπ ≅⊕
j

1Vn,j ⊗R
(n,j)
π . (3.3)

Conclude that the operators R(n,j)π turn the spaces Cm(n,j) into representations of Sn. We will
denote these representations by Wn,j .

Hint: Recall that [U⊗n,Rπ] = 0 and use Schur’s lemma.

In view of eqs. (3.2) and (3.3), we observe that [X⊗n,Rπ] = 0 for arbitrary operators X on C2 .

(b) Show that, conversely, any operator that commutes with all Rπ can be written as a linear
combination of operators of the form X⊗n.

Hint: Compute d
dt1

∣
t1=0

⋯ d
dtn

∣
tn=0

(∑ni=1 tiXi)⊗n. Why does this help?

(c) Conclude that the representations Wn,j of Sn are irreducible and pairwise inequivalent.

Hint: Use Schur’s lemma.

You have thus proved the following result, known as Schur-Weyl duality : The decomposition

(C2)⊗n ≅⊕
j

Vn,j ⊗Wn,j

holds as a representation of both U(2) and Sn. The spaces Vn,j and Wn,j are pairwise inequivalent,
irreducible representations of U(2) and of Sn, respectively. This has important consequences. E.g.:

(d) Show that any operator that commutes with all U⊗n and Rπ is necessarily of the form ∑j zjPj ,
with zj ∈ C. Conclude that {Pj} is the most fine-grained projective measurement that has both
symmetries of the spectrum estimation problem, as discussed in class.

Hint: Use Schur’s lemma.
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