PHYSICS 491: Symmetry and Quantum Information April 23, 2017

Problem Set 3
Michael Walter, Stanford University due May 4, 2017

Problem 1 (The antisymmetric state).
In class, we discussed the quantum de Finetti theorem for the symmetric subspace. It asserts that
the reduced density matrices p4, 4, of a state on Sym™(C?) are \/kd/(n - k) close in trace distance
to a separable state (in fact, to a mixture of tensor power states).

The goal of this exercise is to show that a dependence on the dimension d is unavoidable. To
start, consider the Slater determinant
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We define the antisymmetric state on C% ® C? by tracing out all but two subsystems,

pALA; = trag.a, [1S) (S]]
(a) Show that T'(pa, 4,,04,4,) > 5 for all separable states 74, ,.
Hint: Consider the POVM element @ =11y (i.e., the projector onto the symmetric subspace).

Thus you have shown that the antisymmetric state is far from any separable state. However, note
that |S) is not in the symmetric subspace.

(b) Show that [S)®? ¢ Sym?(C% ® C%), while p®2 is likewise far away from any separable state.
Conclude that the quantum de Finetti theorem must have a dependence on the dimension d.

Problem 2 (De Finetti and mean field theory).
In this exercise you will explore the consequences of the quantum de Finetti theorem for mean field
theory. Consider an operator h on C? ® C% and the corresponding mean-field Hamiltonian
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H=——Yh;,

on (C%)®", where each term h; ; acts by the operator h on subsystems i and j and by the identity
operator on the remaining subsystems (e.g., hy 2 = h® 19("2)),

(a) Show that the eigenspaces of H are invariant subspaces for the action of the symmetric group.

Now assume that the ground space is nondegenerate, and spanned by some |Ep). Then part @implies
that Ry |Eo) = x(7)|Ep) for some function y. This function necessarily satisfies x(77) = x(7)x(7).

(b) Show that x(i <> j) = x(1 « 2) for all i # j. Conclude that |Ep) is either a symmetric tensor or
an antisymmetric tensor.

Hint: First show that x(mrn~ 1) = x(7).



If n > d, then there exist no nonzero antisymmetric tensors. Thus, in the thermodynamic limit
of large n, the ground state |Ep) is in the symmetric subspace Sym™(C?) and so the quantum de
Finetti theorem is applicable.

(c) Show that, for large n, the energy density in the ground state can be well approximated by
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This justifies the folklore that “in the mean field limit the ground state has the form |t))®>”.

Problem 3 (Universal quantum data compression).
In class, we discussed a quantum compression protocol that works for all qubit ensembles {p,, [¢;)}
for which the associated density operator p = Y., p [12) (| has given eigenvalues {p, 1 - p}.

Your task in this exercise is to design a universal compression protocol that works for all qubit
ensembles with S(p) < Sp, where Sy > 0 is a given target compression rate.

(a) Show that, for all Sy > 0, there exist projectors P, on subspaces H,, of (C?)®" such that:

(i) For all density operators p with S(p) < Sp, tr [Pnp@’”] —1lasn— oo,

(ii) The dimension of H,, is at most 2(%+9(M) for some function § with d(n) - 0 as n — co.
Hint: Use the spectrum estimation projectors P; in a clever way.

(b) Use the projectors P, to construct a compression protocol with compression rate Sy that works
for all qubit ensembles with S(p) < Sp (i.e., show that in the limit of large block length n, the
average squared overlap between the original state and the decompressed state goes to one).

Hint: Follow the same construction as in lecture [4.

Bonus Problem 4 (Bounds on entropies).
In this exercise, you will prove two bounds that we used in class. Let 0 <p,q < 1. The first bound
concerns the binary entropy function h(p) = —-plogp - (1 - p)log(1 - p).

(a) Consider the function n(z) = —zlogx and assume that |p - ¢| < % Show that
[n(p) = n(@)l < n(lp - dl), (3.1)
and deduce the following special case of Fannes’ inequality:
[h(p) = h(g)] < 2n(lp - 4l)

1-p

The second bound concerns the binary relative entropy (p|q) = plogg +(1-p)log=.

(b) Derive the following special case of Pinsker’s inequality:
2 2
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Hint: Remember that logz =Inxz/In2 is the logarithm to the base two.



Bonus Problem 5 (Schur-Weyl duality).
In class, we discussed an important mathematical result known as Schur-Weyl duality. The goal of
this exercise is to supply some last details and conclude its proof.

Recall that we decomposed the Hilbert space of n qubits as a representation of U(2). Using the

same notation as in class,
2 ~ J
(C)®" =P Vp,0C™™),
J

such that, for all X € U(2),
X" = DT @ Lemins), (3.2)
J
and we discussed that this formula can be extended to arbitrary operators X on C2.

(a) Show that the representation operators R, for 7 € S,, have the form

R.=2@1y,, ® RI™D. (3.3)
j

Conclude that the operators REF”J ) turn the spaces C"™™J) into representations of S,. We will
denote these representations by W, ;.

Hint: Recall that [U®™, R;] =0 and use Schur’s lemma.
In view of eqs. (3.2) and (3.3), we observe that [X®", R, ] = 0 for arbitrary operators X on C? .

(b) Show that, conversely, any operator that commutes with all R, can be written as a linear
combination of operators of the form X®".

tl:O...% L (X0, t:X,)®". Why does this help?

Hint: Compute d;fl‘
¢) Conclude that the representations W, ; of .S,, are irreducible and pairwise inequivalent.
7]
Hint: Use Schur’s lemma.

You have thus proved the following result, known as Schur- Weyl duality: The decomposition

((C2)®n = @VHJ ® WnJ‘
J

holds as a representation of both U(2) and S,,. The spaces V;, ; and W, ; are pairwise inequivalent,
irreducible representations of U(2) and of S,,, respectively. This has important consequences. E.g.:

(d) Show that any operator that commutes with all U®™ and R is necessarily of the form ¥, z; P;,
with z; € C. Conclude that {P;} is the most fine-grained projective measurement that has both
symmetries of the spectrum estimation problem, as discussed in class.

Hint: Use Schur’s lemma.
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