
PHYSICS 491: Symmetry and Quantum Information April 16, 2017

Problem Set 2
Michael Walter, Stanford University due April 25, 2017

Problem 1 (Pure state entanglement).
In this exercise you will study the entanglement of pure states ∣ψ⟩AB ∈ HA ⊗ HB. In class, we
discussed the Schmidt decomposition

∣ψ⟩AB =
r

∑
i=1

si ∣ei⟩A ⊗ ∣fi⟩B

and its relation to the eigenvalues of the reduced density matrices. For simplicity we will assume
that dimHA = dimHB = d.

(a) We say that ∣ψ⟩AB is maximally entangled if si = 1
√

d
for all i. Show that ∣ψ⟩AB is maximally

entangled if and only if ρA and ρB are maximally mixed (i.e., proportional to 1).

(b) Show that ∣ψ⟩AB is a product state if and only if ρA and ρB are pure states.

This suggests that the eigenvalues of the reduced density matrices ρA and ρB can be used to
characterize the entanglement of ∣ψ⟩AB. As an example, consider the Rényi-2 entropy, defined by

S2(A) = − log trρ2A.

(c) Find a formula for S2(A) in terms of the eigenvalues of the reduced density matrices.

(d) Show that S2(A) = 0 for product states, S2(A) = log d for maximally entangled states, and
otherwise 0 < S2(A) < log d.

You will now study the average entanglement of pure states in HA ⊗HB , drawn at random from the
“uniform” probability distribution dψAB that you know from class.

(e) Let FA denote the swap operator on H⊗2
A that sends ∣a1, a2⟩ ↦ ∣a2, a1⟩. Verify that

trρ2A = tr [(FA ⊗ 1BB) ∣ψ⟩⊗2AB ⟨ψ∣⊗2AB] .

(f) Let FB denote the swap operator on H⊗2
B , defined in the same way as FA. Show that

∫ dψAB ∣ψ⟩⊗2AB ⟨ψ∣⊗2AB =
1

d2(d2 + 1)
(1AA ⊗ 1BB + FA ⊗ FB) .

Hint: Remember the symmetric subspace.

(g) Show that the average Rényi-2 entropy S2(A) of a random pure state is no smaller than
log d − log 2.

Hint: Jensen’s inequality shows that ∫ dψ log f(∣ψ⟩) ≤ log (∫ dψ f(∣ψ⟩)).
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Problem 2 (Extensions of quantum states).
In this exercise you will verify two important facts that we discussed in class:

(a) Show that any density operator admits a purification. That is, given a quantum state ρA on
some Hilbert space HA, construct a pure state ∣ψ⟩AB ∈ HA ⊗HB, where HB is some auxiliary
Hilbert space, such that

ρA = trB [∣ψ⟩ ⟨ψ∣AB] .

Hint: Consider the spectral decomposition of ρA.

(b) Show that any extension of a pure state is a tensor product. That is, show that if ρA is pure
then any extension is of the form

ρAB = ρA ⊗ ρB.

Hint: You have already solved this problem in the case that ρAB is pure.

Problem 3 (The symmetric subspace is irreducible).
In this problem, you will show that the symmetric subspace is an irreducible representation of SU(d).
We will start with d = 2. For any operator M on C2, define a corresponding operator on (C2)⊗n by

M̃ =M1 +M2 + ⋅ ⋅ ⋅ +Mn.

Here we write M1 = M ⊗ 1 ⊗ . . . ⊗ 1, M2 = 1 ⊗M ⊗ 1 ⊗ . . . ⊗ 1, etc. Now consider an arbitrary
subspace H ⊆ Symn(C2) that is invariant for SU(2).

(a) Show that M̃ ∣ψ⟩ ∈ H for any vector ∣ψ⟩ ∈ H.

Hint: If H is Hermitian then eiH is unitary.

In class, we observed that the symmetric subspace has natural occupation number basis. For d = 2,
it is given by

∥t⟫ ∝ ∣0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

t

,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−t

⟩ + permutations (t = 0, . . . , n).

(b) Find an operator M such that M̃ has the basis vectors ∥t⟫ as eigenvectors (with distinct
eigenvalues). Conclude that H is spanned by a subset of the basis vectors ∥t⟫.

(c) Find operators M± such that M̃±∥t⟫ ∝ ∥t±1⟫. Conclude that H is either {0} or all of Symn(Cd).

Thus you have proved that Symn(C2) is indeed an irreducible representation of SU(2)!

(d) Any irreducible representation of SU(2) can be labeled by its spin j. What is the spin of the
symmetric subspace Symn(C2)?

(e) Optional: Sketch how your proof can be generalized to show that Symn(Cd) is an irreducible
representation of SU(d).
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Bonus Problem 4 (Entanglement witnesses and convexity).
An observable XAB on HA ⊗HB is called an entanglement witness for a quantum state ρAB if

tr[XAB ρAB] < 0,

while
tr[XAB σAB] ≥ 0 (2.1)

for all separable states σAB.

(a) Construct an entanglement witness for the maximally entangled state ∣Φ+⟩ = 1
√

2
(∣00⟩ + ∣11⟩).

Hint: Compute the overlap of ∣Φ+⟩ with a pure product state ∣ψ⟩A ⊗ ∣φ⟩B. Why could this help?

(b) Argue that for any entangled state ρAB there exists an entanglement witness XAB.

Hint: You do not need to construct the entanglement witness explicitly.

Bonus Problem 5 (The extendibility hierarchy).
In this problem, you will show that any quantum state that has an n-extension is close to a separable
state if n is large, as discussed in class.

(a) Imitate the proof of the quantum de Finetti theorem given in class to show that, for any pure
state ∣Φ⟩AB1...Bn

∈ HA ⊗ Symn(HB),

trB2...Bn[∣Φ⟩ ⟨Φ∣] ≈ ∫ dψ p(ψ) ∣Wψ⟩ ⟨Wψ ∣A ⊗ ∣ψ⟩ ⟨ψ∣B1

for large n. Here, the integral is over the set of pure states on HB , p(ψ) is a probability density,
and the ∣Wψ⟩ are pure states in HA.

Now suppose that ρAB is an arbitrary quantum state that has an n-extension (i.e., that there exists
some σAB1...Bn such that σABk

= ρAB for all k).

(b) Show that ρAB also has an n-extension ρAB1...Bn that is permutation-invariant on the B-systems,
i.e., [1A ⊗Rπ, ρ] = 0 for all π ∈ Sn.

Any n-extension as in (b) admits a purification in (HA ⊗HA′)⊗ Symn(HB ⊗HB′), where HA′ = HA
and HB′ = HB.

(c) Conclude that any n-extendible ρAB is close to a separable state for large n.

Hint: The trace distance does not increase when you take the partial trace.
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