
PHYSICS 491: Symmetry and Quantum Information April 9, 2017

Problem Set 1
Michael Walter, Stanford University due April 18, 2017

Problem 1 (Classical and quantum strategies for the GHZ game).
Three players and the referee play the GHZ game, following the same conventions as in class. In
particular, the referee chooses each of the four questions xyz with equal probability 1/4.

(a) Verify that the winning probability for a general quantum strategy, specified in terms of a state
∣ψ⟩ABC and observables Ax,By,Cz, is given by

pwin,q =
1

2
+

1

8
⟨ψABC ∣A0 ⊗B0 ⊗C0 −A1 ⊗B1 ⊗C0 −A1 ⊗B0 ⊗C1 −A0 ⊗B1 ⊗C1∣ψABC⟩ . (1.1)

(b) Suppose that Alice, Bob, and Charlie play the following randomized classical strategy: When
they meet before the game is started, they flip a biased coin. Let π denote the probability
that the coin comes up heads. Depending on the outcome of the coin flip, which we denote by
λ ∈ {heads,tails}, they use one of two possible deterministic strategies aλ(x), bλ(y), cλ(z) to
play the game. Find a formula analogous to (1.1) for the winning probability pwin,cl of their
strategy.

(c) In class we argued that even randomized classical strategies cannot do better than pwin,cl ≤ 3/4.
Verify this explicitly using the formula you derived in (b).

(d) Any classical strategy can be realized by a quantum strategy. Show this explicitly for the
randomized classical strategy described in (b) by constructing a quantum state ∣ψ⟩ABC and
observables Ax,By,Cz such that pwin,cl = pwin,q.

Problem 2 (Distinguishing quantum states).
The trace distance between two quantum states ∣φ⟩ and ∣ψ⟩ is defined by

T (φ,ψ) = max
0≤Q≤1

⟨φ∣Q∣φ⟩ − ⟨ψ∣Q∣ψ⟩ . (1.2)

Here, 0 ≤ Q ≤ 1 means that both Q and 1 −Q are positive semidefinite operators.

(a) Imagine a quantum source that emits ∣φ⟩ or ∣ψ⟩ with probability 1/2 each. Show that the optimal
probability of identifying the true state by a POVM measurement is given by

1

2
+

1

2
T (φ,ψ).

Why can this probability never be smaller than 1/2?

(b) Conclude that only orthogonal states (i.e., ⟨φ∣ψ⟩ = 0) can be distinguished perfectly.

(c) Show that the trace distance is a metric. That is, verify that T (φ,ψ) = 0 if and only if ∣φ⟩ = eiθ ∣ψ⟩,
that T (φ,ψ) = T (ψ,φ), and prove the triangle inequality T (φ,ψ) ≤ T (φ,χ) + T (χ,ψ).
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You will now derive an explicit formula for the trace distance. For this, consider the spectral
decomposition ∆ = ∑i λi ∣ei⟩ ⟨ei∣ of the Hermitian operator ∆ = ∣φ⟩ ⟨φ∣ − ∣ψ⟩ ⟨ψ∣.

(d) Show that the operator Q = ∑λi>0 ∣ei⟩ ⟨ei∣ achieves the maximum in (1.2), and deduce the
following formulas for the trace distance:

T (φ,ψ) = ∑
λi>0

λi =
1

2
∑
i

∣λi∣.

(e) Conclude that the optimal probability of distinguishing the two states in (a) remains unchanged
if we restrict to projective measurements.

In class, we used another measure to compare quantum states, namely their overlap ∣⟨φ∣ψ⟩∣.

(f) Show that trace distance and overlap are related by the following formula:

T (φ,ψ) =
√

1 − ∣⟨φ∣ψ⟩∣2.

Hint: Argue that it suffices to verify this formula for two pure states of a qubit, with one of them
equal to ∣0⟩, and use the formula derived in part (d).

This exercise shows that states with overlap close to one are almost indinguishable by any measure-
ment, justifying our intuition from class.

Problem 3 (POVMs can outperform projective measurements; Nielsen & Chuang §2.2.6).
Imagine a qubit source that emits either of the two states ∣0⟩ and ∣+⟩ = (∣0⟩ + ∣1⟩)/

√
2 with equal

probability 1/2. Your task is to design a measurement scheme that allows to optimally distinguish
these two cases. Unfortunately, the states ∣0⟩ and ∣+⟩ are not orthogonal, so you know that this
cannot be done perfectly (e.g., from the previous problem).

Suppose now that your measurement scheme is not allowed to ever give a wrong answer ! Instead,
it is allowed to report one of three possible answers: that the true state is ∣0⟩, that the true state is
∣+⟩, or that the measurement outcome is inconclusive. We define the success probability of such a
scheme as the probability that you identify the true state correctly.

(a) Show that for projective measurements the success probability is at most 1/4.

(b) Find a POVM measurement that achieves a success probability strictly larger than 1/4.

Bonus Problem 4 (POVM measurements are physical).
In this exercise, you will show that every POVM measurement can be realized by a projective
measurement on a larger system. Thus, let {Qx}x∈Ω be an arbitrary POVM measurement on some
Hilbert space HA. For simplicity, we will assume that the set of possible outcomes Ω is finite.

(a) Let HB be a Hilbert space space with one basis vector ∣x⟩B for each x ∈ Ω, and fix some arbitrary
x0 ∈ Ω. Show that the linear map

∣ψ⟩A ⊗ ∣x0⟩B ↦∑
x

√
Qx ∣ψ⟩A ⊗ ∣x⟩B (1.3)

is an isometry (an isometry is a map that preserves inner products).1

1Every positive semidefinite operator such as Qx has a square root
√
Qx, defined by taking the square root of each

eigenvalue while keeping the same eigenspaces.
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Any isometry from a subspace into a larger Hilbert space can be extended to a unitary operator on
the larger space. Thus there exists a unitary UAB on HA ⊗HB that extends the isometry (1.3).

(b) Use UAB to design a projective measurement {PAB,x} on the joint system HA ⊗HB such that

Qx = (1A ⊗ ⟨x0∣B)PAB,x (1A ⊗ ∣x0⟩B)

for all outcomes x ∈ Ω.
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