
PHYSICS 491: Symmetry and Quantum Information

Michael Walter, Stanford University

Spring 2017



Abstract

This course gives an introduction to quantum information theory, targeted to advanced undergradu-
ates and graduate students that have taken a quantum mechanics class on the level of Physics 230.
We use symmetries as a guiding principle to study the fundamental features of quantum mechanics
and their exploitation for quantum information processing tasks.
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PHYSICS 491: Symmetry and Quantum Information April 4, 2017

Quantum correlations, non-local games, rigidity
Lecture 1 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Quantum mechanics can seem quite strange at times! We have phenomena such as superpositions
(∣+⟩ = (∣0⟩ + ∣1⟩)/

√
2), entanglement (∣φ⟩AB ≠ ∣φ⟩A ⊗ ∣φ⟩B), incompatible measurements ([X,Y ] ≠ 0),

etc. This “strangeness” manifests itself through the correlations predicted by quantum mechanics.
A modern perspective of studying and comparing correlations is through the notions of a nonlocal
game. You have met nonlocal games already in Physics 230, but we will discuss some interesting
new aspects that you may not have seen before.

1.1 Nonlocal games

In a nonlocal game, we imagine that a number of players play against a referee. The referee hands
them questions and the players reply with appropriate answers that win them the game. The players’
goal is to collaborate and maximize their chances of winning. Before the game, the players meet
and may agree upon a joint strategy – but then they move far apart from each other and cannot
communicate with each other while the game is being played (this can be ensured by the laws of
special relativity). The point then is the following: Since the players are constrained by the laws of
physics, we can concoct games where players utilizing a quantum strategy may have an advantage.
This way of reasoning about quantum correlations is eminently operational and quantitative, as we
will see in the following.

The GHZ (Greenberger-Horne-Zeilinger) game is a famous example of a nonlocal game due to
Mermin (1990); cf. Greenberger et al. (1990). Figure 1 illustrates the setup of the GHZ game. It
involves three players – Alice, Bob, and Charlie. Each receives as questions a bit x, y, z ∈ {0,1} and
their answers are likewise bits a, b, c ∈ {0, 1}. They win the game if the sum of their answers modulo
2 is as follows:

x y z a⊕ b⊕ c

0 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1

Note that not all bit strings xyz are questions that the referee asks. The winning condition can be
succintly stated as follows: a⊕ b⊕ c = x ∨ y ∨ z. We write ⊕ for addition modulo 2 and ∨ for the
logical or. Those of you that have taken the Physics 230 final are already familiar with the rules of
this game.
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Figure 1: Setup of the three-player GHZ game. The winning condition is that a⊕ b⊕ c = x ∨ y ∨ z.

Classical strategies

It is easy to see that the GHZ game cannot be won if the players’ strategies are described by a “local”
and “realistic” theory. As in Physics 230, “local” means that each player’s answer does only depend
on its immediate surroundings, and “realistic” means that the theory must assign a pre-existing
value to every possible measurement before the measurement is made. In our case, “measurements”
correspond to “questions” and “outcomes” to “answers”. Thus in a local and realistic theory we
assume that

a = a(x), b = b(y), c = c(z).

When we say that the players may jointly agree on a strategy before the game is being played, we
mean that they may select “question-answer functions” a, b, c in a correlated way. For example, when
the players meet before the game is being played, they could flip a coin, resulting in some random
λ ∈ {0, 1}, and agree on the strategy a(x) = x⊕ λ, b(y) = y ⊕ λ, c(z) = z ⊕ λ. Thus, in mathematical
terms, the functions a,b,c can be correlated random variables. Equivalently, we could say that λ is a
“hidden variable”, with some probability distribution pλ(0) = pλ(1) = 1/2, and consider a = a(x,λ)
as a deterministic function of both the input and the hidden variable. You will discuss this point
of view in problem 1.1. If the players strategy can be described by classical mechanics then the
above would provide an adequate model. Thus, strategies of this form are usually referred to as local
hidden variable strategies or simply as classical strategies.

Suppose now for sake of finding a contradiction that Alice, Bob, and Charlie can win the GHZ
game perfectly. Then,

1 = 0⊕ 1⊕ 1⊕ 1

= (a(0) ⊕ b(0) ⊕ c(0)) ⊕ (a(1) ⊕ b(1) ⊕ c(0)) ⊕ (a(1) ⊕ b(0) ⊕ c(1)) ⊕ (a(0) ⊕ b(1) ⊕ c(1)) = 0.

The last equality holds because a(x) ⊕ a(x) ≡ 0 etc., whatever the value of a(x). This is a
contradiction! We conclude that there is no perfect classical winning variable strategy for the GHZ
game. Suppose, e.g., that the referee selects each possible question xyz with equal probability 1/4.
Then the game can be won with probability at most

pwin,cl = 3/4.

This winning probability can be achieved by, e.g., the trivial strategy a(x) = b(y) = c(z) ≡ 1.

Quantum strategies

In a quantum strategy, we imagine that the three players are described by quantum mechanics. Thus
they start out by sharing an arbitrary joint state ∣ψ⟩ABC ∈ HA ⊗HB ⊗HC , where HA is the Hilbert
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space describing a quantum system in Alice’ possession, etc., and upon receiving their questions
x, y, z ∈ {0,1} they will measure corresponding observables Ax, By, Cz on their respective Hilbert
spaces. While it might not be immediately obvious, any classical strategy is also a quantum strategy,
as you will show in problem 1.1.

It will be convenient to take the eigenvalues (i.e., measurement outcomes) of the observables to be
in {±1} rather than in {0, 1}. Provided the outcome of Alice’s measurement of Ax is (−1)a, she sends
back a as the answer, etc. In this case, the eigenvalues of Ax⊗By⊗Cz are (−1)a+b+c = (−1)a⊕b⊕c, that
is, they correspond precisely to the the sum modulo two of the answers. Thus, a perfect quantum
strategy is one where

(A0 ⊗B0 ⊗C0) ∣ψ⟩ABC = + ∣ψ⟩ABC ,

(A1 ⊗B1 ⊗C0) ∣ψ⟩ABC = − ∣ψ⟩ABC ,

(A1 ⊗B0 ⊗C1) ∣ψ⟩ABC = − ∣ψ⟩ABC ,

(A0 ⊗B1 ⊗C1) ∣ψ⟩ABC = − ∣ψ⟩ABC ,

(1.1)

In problem 1.1 you will verify that, more generally,

pwin,q =
1

2
+

1

8
⟨ψABC ∣A0 ⊗B0 ⊗C0 −A1 ⊗B1 ⊗C0 −A1 ⊗B0 ⊗C1 −A0 ⊗B1 ⊗C1∣ψABC⟩

is the probability of winning the GHZ game (for uniform choice of questions xyz).

Remarkably, there is a quantum strategy for the GHZ game that allows the players to win the
game every single time (i.e., pwin,q = 1). Following Watrous (2006), the players share the three-qubit
state

∣Γ⟩ABC =
1

2
(∣000⟩ − ∣110⟩ − ∣101⟩ − ∣011⟩) ∈ C2

⊗C2
⊗C2, (1.2)

where we imagine that the first qubit is in Alice’s possession, the second in Bob’s, and the third in
Charlie’s. Upon receiving x = 0, Alice measures the observable A0 = Z = ( 1 0

0 −1 ) on her qubit, while
upon receiving x = 1 she measures the observable A1 =X = ( 0 1

1 0 ) . Bob and Charlie perform exactly
the same strategy on their qubits. To see that this quantum strategy wins the GHZ game every
single time, we only need to verify (1.1). Indeed:

(Z ⊗Z ⊗Z) ∣Γ⟩ABC = ∣Γ⟩ABC ,

(X ⊗X ⊗Z) ∣Γ⟩ABC =
1

2
(∣110⟩ − ∣000⟩ − (−1) ∣011⟩ − (−1) ∣101⟩) = − ∣Γ⟩ABC ,

and similarly (X ⊗Z ⊗X) ∣Γ⟩ABC = (Z ⊗X ⊗X) ∣Γ⟩ABC = − ∣Γ⟩ABC .
This shows that in a precise quantitative sense, quantum mechanics enables much stronger

“non-local correlations” than what is possible using a local realistic theory.

Exercise. This looks different from what you remember from the Physics 230 exam! It is a fun
exercise to relate the strategy above to the one you remember from the Physics 230 exam.

Device-independent quantum cryptography

When the three players perform the optimal strategy described above then not only do their answers
satisfy the winning condition but their answers are in fact completely random, subject only to the
constraint that a ⊕ b ⊕ c must sum to the desired value x ∨ y ∨ z. In particular, a, b ∈ {0,1} are
two independent random bits. You can easily verify this by inspection: E.g., for x = y = z = 0,

7



Alice, Bob, and Charlie each measure their local Z observable. The eigenvectors are ∣abc⟩ and so
it is clear from eq. (1.2) that we obtain abc ∈ {000,110,101,011} with equal probability 1/4. The
randomness obtained in this way is also private in the following sense: Suppose that apart from
Alice, Bob, Charlie, there is also an evil eavesdropper (Evan) who would like to learn about the
random bits generated in this way. Their joint state will be described by a pure state ∣ψ⟩ABCE (we
may assume that this is a pure state – just hand all other systems to the eavesdropper; this will only
give him more power). If Alice, Bob, and Charlie indeed share the state in eq. (1.2) (or for that
matter any pure state) then it must be the case that ∣ψ⟩ABCE = ∣Γ⟩ABC ⊗ ∣ψ⟩E . You will show this
in problem 2.2. This means that Evan is completely decoupled from Alice, Bob and Charlie’s state,
and it follows that the random bits a and b are completely uncorrelated from the E system. All
these means that the players’ answers can be used to generate private randomess – the referee simply
locks Alice, Bob, and Charlie (best thought of as quantum devices) into his laboratory, ensures that
they cannot communicate, and interrogates them with questions. But of course, the referee cannot
in general trust Alice, Bob, and Charlie to actually play the strategy above! So this observation
might seem not very useful at first glance. . .

However, what if the optimal strategy for winning the GHZ game was actually unique? In this
case, the referee could test Alice, Bob, and Charlie with randomly selected questions and check that
they pass the test every time. After a while, the referee might be confident that the players are
in fact able to win the GHZ game every time. But then, by uniqueness of the winning strategy,
the referee should in fact know the precise strategy that Alice, Bob, and Charlie are pursuing! The
referee in this case would not have to put any trust in Alice, Bob, Charlie – they would prove their
worth by winning the GHZ game every time around. This remarkable idea for generating private
random bits was first proposed by Colbeck (2009). (Note that we need private random bits in the
first place to generate the random questions – thus this protocol proposes to achieve a task known as
randomness expansion. Private random bits cannot be generated without an initial seed of random
bits.) The argument sketched so far is of course not rigorous at all: ignoring questions of robustness,
we need to take into account that Alice, Bob, Charlie may not behave the same way every time we
play the game, may have a (quantum) memory, etc.

However, these challenges can be circumvented and secure randomness expansion protocols using
completely untrusted devices do exist (see, e.g., Miller and Shi (2014) and the review Acín and
Masanes (2016))! This general line of research is known as device-independent quantum cryptography
(Mayers and Yao, 1998), since it does not rely on assumptions on the inner workings of the devices
involved, but only on their observed correlations. Other applications of include device-independent
quantum key distribution (Vazirani and Vidick, 2014) and the command of an adversarial quantum
system (Reichardt et al., 2013).

1.2 Rigidity of the GHZ game

For the remainder of the lecture, we will content ourselves with showing that the winning strategy
for the GHZ game is indeed essentially unique (Colbeck and Kent, 2011). We say that the GHZ
game is rigid – or that it is a self-test for the state (1.2).

Remark. The CHSH game which you might remember from Physics 230 is likewise rigid; see
Tsirel’son (1987), Summers and Werner (1987), Popescu and Rohrlich (1992), McKague et al.
(2012), Reichardt et al. (2013). (Here, optimal quantum winning probability is 1/2 + 1/2

√
2 < 1!)

Robust rigidity results for general XOR games are contained in Slofstra (2011), Miller and Shi (2013),
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Ostrev (2015). Rigidity is also closely related to the question of how much entanglement is needed to
win a nonlocal game (e.g., Slofstra, 2011). Surveying some of these results would make for great (but
challenging) course projects.

To prove the rigidity result, we first observe that in the three-qubit strategy discussed above, the
state ∣Γ⟩ABC is already uniquely determined by the measurement operators: Indeed, any eigenvector
of Z⊗Z⊗Z is necessarily of the form α ∣000⟩+β ∣110⟩+γ ∣101⟩+δ ∣011⟩, and the other three conditions
are only satisfied if α = −β = −γ = −δ = 1/2, up to overall phase.

Let us now consider a general optimal strategy given by operators Ax, By, Cz with A2
x = 1 etc.

and a state ∣ψ⟩ABC ∈ HA ⊗HB ⊗HC such that eq. (1.1) are satisfied. The basic strategy to prove
the rigidity theorem will be to uncover some hidden symmetries in the problem to reduce to the case
of three qubits:

Claim 1.1. In any optimal strategy, the observables must anticommute: “{A0,A1} = 0, {B0,B1} = 0,
{C0,C1} = 0” (see below for fine-print).

We will prove this claim later, but let us see first see how this allows us to identify three qubits.

How to find a qubit?

Consider, e.g., the pair of observables A0,A1. They satisfy A2
0 = A

2
1 = 1 and {A0,A1} = 0. Hence,

A2 = −
i
2[A0,A1] = −iA0A1 = iA1A0 is such that

[A1,A2] = A1A2 −A2A1 = iA1A1A0 + iA0A1A1 = 2iA0,

and similarly [A2,A0] = 2iA1. This means that A0,A1,A2 transform like the Pauli matrices X,Y,Z!
It follows that the Hilbert space decomposes into irreducible representations of SU(2):

HA = Vj1 ⊕ Vj2 ⊕ ⋅ ⋅ ⋅ = ⊕
j=0,1/2,1,...

Vj ⊗Cmj ,

where mj counts the number of times the spin-j representation Vj appears in HA. We claim that,
since {A0,A1} = 0, this representation of SU(2) has to be j = 1/2! Indeed, A2

2 = −iA0A1iA1A0 = 1
and so

1

4
(A2

0 +A
2
1 +A

2
2) =

3

4
=

1

2
(
1

2
+ 1)

acts by a scalar. Comparing with j(j + 1) we find that j = 1/2 (cf. remark 5.4).
Therefore, HA ≅ C2 ⊗HA′ , where HA′ is some auxiliary Hilbert space of dimension m1/2, and

A0,A1 act by
Z ⊗ 1,X ⊗ 1.

Exercise. Can you find an argument that avoids using the representation theory of SU(2)?

The same argument works for Bob and Charlie’s pairs of observables. Thus the total Hilbert
space decomposes as

HA ⊗HB ⊗HC ≅ (C2
⊗C2

⊗C2
) ⊗ (HA′ ⊗HB′ ⊗HC′)

and the measurement operators act as in the three-qubit solution. We saw above that in the
three-qubit solution the state is uniquely determined by the measurement operators. Thus,

∣ψ⟩ABC = ∣Γ⟩ ⊗ ∣γ⟩A′B′C′ ,

where ∣Γ⟩ is the three-qubit state from eq. (1.2) and ∣γ⟩A′B′C′ some auxiliary state (which is irrelevant
because the observables do not act on it). This is the desired rigidity result.
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Anticommutations from correlations (proof of the claim)

We first note that the optimality condition eq. (1.1) can be written as

A0 ∣ψ⟩ = +B0C0 ∣ψ⟩

A0 ∣ψ⟩ = −B1C1 ∣ψ⟩

A1 ∣ψ⟩ = −B1C0 ∣ψ⟩

A1 ∣ψ⟩ = −B0C1 ∣ψ⟩ .

Here and in the following we write A0 instead of A0⊗1B⊗1C to make the formulas more transparent.
From the first two and last two equations, respectively,

A0 ∣ψ⟩ = +
1

2
(B0C0 −B1C1) ∣ψ⟩

A1 ∣ψ⟩ = −
1

2
(B1C0 +B0C1) ∣ψ⟩

Hence,

A0A1 ∣ψ⟩ = −
1

4
(B1C0 +B0C1) (B0C0 −B1C1) ∣ψ⟩ = −

1

4
(B1B0 −C0C1 +C1C0 −B0B1) ∣ψ⟩ ,

A1A0 ∣ψ⟩ = −
1

4
(B0C0 −B1C1) (B1C0 +B0C1) ∣ψ⟩ = −

1

4
(B0B1 −C1C0 +C0C1 −B1B0) ∣ψ⟩

and so
{A0,A1} ∣ψ⟩ = 0.

How can we show that {A0,A1} = 0?
This is in fact not exactly true – hence the “quotes” in claim 1.1. But what is true is that

{A0,A1} = 0 on a subspace H̃A of HA such that ∣ψ⟩ABC ∈ H̃A ⊗HB ⊗HC . Indeed, we can expand

∣ψ⟩ABC = ∑
i

si ∣ei⟩A ⊗ ∣fi⟩BC

where the ∣ei⟩ and ∣fi⟩ are orthonormal and si > 0. If there are dim H̃A terms then the ∣ei⟩ form a
complete basis of HA and so {A0,A1} ∣ψ⟩ = 0 implies that {A0,A1} = 0. Otherwise, we can restrict
to the subspace H̃A ∶= span{∣ei⟩A} – this is called the Schmidt decomposition and we will discuss it
in more detail in a future lecture. In the latter case, ∣ψ⟩ABC ∈ H̃A ⊗HB ⊗HC , the operators Ax are
block diagonal with respect to H̃A ⊕ H̃⊥a, and {A0,A1} = 0 on H̃A. We can proceed likewise for By
and Cz.

Statement of the rigidity theorem

What have we proved? In mathematical terms, we have established the following theorem:

Theorem 1.2 (Rigidity for the GHZ game). Consider an optimal strategy for the GHZ game given
by operators Ax, By, Cz with A2

x = 1A etc. and a state ∣ψ⟩ABC ∈ HA ⊗HB ⊗HC . Then there exist
isometries VA∶C2 ⊗HA′ →HA, VB ∶C2 ⊗HB′ →HB, VC ∶C2 ⊗HC′ →HC such that

(i) ∣ψ⟩ABC = (VA ⊗ VB ⊗ VC)(∣Γ⟩ ⊗ ∣γ⟩) for some ∣γ⟩ ∈ HA′ ⊗HB′ ⊗H′C.
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(ii) V †
AA0VA = Z ⊗ 1A′, V

†
AA1VA =X ⊗ 1A′, and similarly for By and Cz.

In the coming lectures, we will revisit many of the techniques used above in a more systematic
way. I would suggest that you come back to this lecture at the end of the term – at this point you
should be well equipped to write up a complete proof of theorem 1.2.

Outlook

There are many further aspects of nonlocal games related to what we discussed in this lecture. For
example, how do winning probabilities and optimal strategies behave when one plays many instances
of a game – either in multiple rounds (sequentially) or even at the same time (in parallel)? It
is clear that if p is the optimal winning probability for a single instance then for n instances the
winning probability is at least pn – but we might be able to do better by using strategies that exploit
correlations or entanglement in a clever way! Indeed, the maximal classical winning probability for a
single instance of the CHSH game is 3/4 – while for two instances it is 10/16 > 9/16 = (3/4)2 (Barrett
et al., 2002). On the other hand, it is proved in Cleve et al. (2007) not only for the CHSH game but
for arbitrary XOR games (games where the winning condition only depends on the sum modulo two
of the answers, a⊕ b⊕ . . . ) that the optimal quantum winning probability for n instances is equal to
pn – this is known as a perfect parallel repetition theorem. Surveying some of the papers in this area
could also make for a good course project.
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Measurements, symmetric subspace, pure state estimation
Lecture 2 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Today we will talk about measurements in quantum mechanics and discuss the problem of
estimating an unknown pure state.

2.1 Generalized measurements

From your quantum mechanics class you know that observable in quantum mechanics are modeled
by Hermitian operators X. Let X = ∑x∈Ω xPx denote the spectral decomposition of an observable,
i.e., Px denotes the projector onto the eigenspace corresponding to an eigenvalue x ∈ Ω. Thus we
can repackage X in terms the collection of projections Px, labeled by the possible measurement
outcomes x ∈ Ω. This is convenient for two reasons: First, the probability of outcome x in state ∣ψ⟩
is given by by the Born rule:

Pr(outcome x) = ⟨ψ∣Px∣ψ⟩ , (2.1)

which is naturally expressed in terms of the projections Px. Second, this formalism allows us to
consider more general sets of outcomes Ω that are not necessarily real numbers. Instead of using
observables, we will therefore often prefer to work with the collection of operators {Px}x∈Ω. We
call {Px}x∈Ω a projective measurement. Mathematically, it is specified by operators Px such that (i)
Px ≥ 0, (ii) ∑x Px = 1, and (iii) PxPy = δxyPx.

Can we think of more general measurement schemes? Suppose we couple our system A to an
auxiliary system B that is initialized in a fixed state:

∣ψ⟩ ↦ ∣ψ⟩A ⊗ ∣0⟩B

We then apply an arbitrary projective measurement on the joint system, modelled by some {PAB,x}.
The subscript AB reminds us that we are applying a projective measurement on the full system.
See fig. 2 for illustration. Then the Born rule eq. (2.1) says that

Pr(outcome x) = (⟨ψ∣A ⊗ ⟨0∣B)PAB,x (∣ψ⟩A ⊗ ∣0⟩B) = ⟨ψA∣

⎛
⎜
⎜
⎜
⎝

(1A ⊗ ⟨0∣B)PAB,x (1A ⊗ ∣0⟩B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Qx

⎞
⎟
⎟
⎟
⎠

∣ψA⟩ ,

where we have introduce new operators Qx on HA. These operators have the property that (i) Qx ≥ 0
and (ii) ∑xQx = 1A.

We say call any collection of operators {Qx} satisfying (i) and (ii) a generalized measurement or
a POVM measurement (POVM is short for positive-operator valued measure). The Qx are called
POVM elements. As we saw above, the Born rule for POVM measurements takes the familiar form

Pr(outcome x) = ⟨ψ∣Qx∣ψ⟩ . (2.2)
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Figure 2: A generalized measurement implemented by coupling the system A to an auxiliary system
B initialized in a fixed state ∣0⟩B and performing a projective measurement on the joint system.

A binary POVM measurement, i.e., one that has precisely two outcomes, has the form {Q,1 −Q}

and is therefore specified by a single POVM element 0 ≤ Q ≤ 1.

Remark. In problem 1.4, you will show any POVM can be implemented in the fashion described
above. An alternative way of thinking about a POVM measurement is the following: After coupling
to an auxiliary system B, we apply a unitary UAB and then perform a projective measurement on
the auxiliary system. This fits nicely with our intuitive model of measuring a quantum system – we
couple it to an apparatus B, apply an interacting unitary time evolution, and read off the result at
the apparatus.

While eqs. (2.1) and (2.2) look identical, POVM measurements are truely more general than
projective measurements. This is because while the projections Px are necessarily orthogonal,
PxPy = δxyPx, this does not need to be the case for the Qx.

Example. The four operators 1
2 ∣0⟩ ⟨0∣, 1

2 ∣1⟩ ⟨1∣, 1
2 ∣+⟩ ⟨+∣, 1

2 ∣−⟩ ⟨−∣ make up a POVM with four
possible outcomes. It can be thought of performing either a projective measurement in the basis ∣0⟩,∣1⟩
or in the basis ∣+⟩,∣−⟩, with 50% probability each.

Example 2.1. Another example is the POVM that consists of the three (mutually non-orthogonal)
operators {2

3 ∣0⟩ ⟨0∣ , 2
3 ∣α+⟩ ⟨α+∣ , 2

3 ∣α−⟩ ⟨α−∣}, where ∣α±⟩ = 1
2 ∣0⟩ ±

√
3

2 ∣1⟩. Indeed, it is easily verified
that

2

3
∣0⟩ ⟨0∣ +

2

3
∣α+⟩ ⟨α+∣ +

2

3
∣α−⟩ ⟨α−∣ = 1.

Unlike the previous example, this POVM cannot be decomposed in an interesting way.

In problem 1.3 you will study a state discrimination scenario where POVM measurements
outperform projective measurements.

Continuous POVMs

How can we generalize the concept of a POVM measurement to an infinite set of outcomes Ω (e.g.,
the set of all real numbers R, the set of all quantum states, . . . )? Let us assume that the space of
outcomes Ω carries some measure dx. Then the conditions on {Qx}x∈Ω to be a POVM measurement
are as follows, (i) Qx ≥ 0, as before, and (ii) ∫Ω dxQx = 1, and Born’s rule now states that

p(x) = ⟨ψ∣Qx∣ψ⟩
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is now the probability density of the outcome distribution. In other words, probabilities and
expectation values can be computed as follows:

Pr(outcome x ∈ S) = ∫
S
dx ⟨ψ∣Qx∣ψ⟩ ,

E [f(x)] = ∫ dx ⟨ψ∣Qx∣ψ⟩ f(x). (2.3)

We sometimes say that {Qx} is a continuous POVM.

Remark. This is the most general kind of POVM measurement on a finite-dimensional Hilbert
space. In infinite dimensions, one needs a more mathematically sophisticated concept – positive
operator-valued measures – which is where the term “POVM” originated (e.g., Holevo, 2011).

You might be concerned whether we need an infinite-dimensional auxiliary Hilbert space in order
to implement a POVMs with infinitely many outcomes. Interestingly, any continuous POVM on
a finite-dimensional Hilbert space can be implemented by performing a discrete POVM chosen at
random from a continuous probability distribution (Chiribella et al., 2007). This paper could make
for a good course project.

Today’s goal: State estimation

Suppose we are given a quantum system and we would like to learn about the underlying quantum
state ∣ψ⟩. Is there a measurement that gives us a classical description “ψ′′ of the state ∣ψ⟩? Clearly,
this cannot be done perfectly – since otherwise we could first perform this measurement and then
prepare the state from its classical description multiple times, thereby achieving the impossible task
of cloning :

∣ψ⟩ ↦ “ψ′′ ↦ ∣ψ⟩ ⊗ ∣ψ⟩ .

On the other hand, suppose that we are not given just one copy of a state, but in fact many
copies ∣ψ⟩⊗n. Note that ⟨ψ⊗n∣φ⊗n⟩ = ⟨ψ∣φ⟩n, so if two states are not equal then they rapidly become
orthogonal as n becomes large – suggesting that we can distinguish them arbitrarily well. Of course,
since ⟨ψ∣φ⟩ can be arbitrarily close to one this is not yet a completely rigorous argument. But note
that in this case the states are essentially the same, and so we make only a small error by conflating
them. Thus it seems plausible that we can achieve the following task, known as pure state estimation:

We want to design a continuous POVM {Qψ̂} on (Cd)⊗n, labeled by the pure states on Cd, such
when we measure on ∣ψ⟩⊗n we obtain an outcome ψ̂ that is “close” to ψ (on average, or even with
high probability).

To solve this problem and come up with a good measurement for estimating pure states, we need
to talk about the symmetries inherent in this problem: If ∣ψ⟩ ∈ Cd then not only is ∣ψ⟩⊗n ∈ (Cd)⊗n,
but ∣ψ⟩⊗n is invariant under permuting the subsystems. Let’s make this a bit more precise.

2.2 Symmetric subspace

Let Sn denote the symmetric group on n symbols. Its elements are permutations π∶ {1, . . . , n} →
{1, . . . , n}. Thus, Sn has n! elements. This is a group, meaning that products and inverses are again
contained in Sn. For any π ∈ Sn, we can define an operator Rπ on the n-fold tensor power (Cd)⊗n in
the following way:

Rπ ∣ψ1⟩ ⊗ . . .⊗ ∣ψn⟩ = ∣ψπ−1(1)⟩ ⊗ . . .⊗ ∣ψπ−1(n)⟩
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It is clear that
R1 = 1, RτRπ = Rτπ (2.4)

Indeed, the latter is guaranteed by our judicious use of inverses:

RτRπ ∣ψ1⟩ ⊗ . . .⊗ ∣ψn⟩ = Rτ ∣ψπ−1(1)⟩ ⊗ . . .⊗ ∣ψπ−1(n)⟩

= Rτ ∣ψπ−1(1)⟩ ⊗ . . .⊗ ∣ψπ−1(n)⟩

= ∣ψπ−1(τ−1(1))⟩ ⊗ . . .⊗ ∣ψπ−1(τ−1(n))⟩

= ∣ψ(τπ)−1(1)⟩ ⊗ . . .⊗ ∣ψ(τπ)−1(n)⟩

= Rτπ ∣ψ1⟩ ⊗ . . .⊗ ∣ψn⟩ .

Equation (2.4) says that the map π ↦ Rπ turns (Cd)⊗n into a representation of the symmetric group
Sn.

Let us return to the vectors ∣ψ⟩⊗n. Clearly, they have the property that Rπ ∣ψ⟩⊗n = ∣ψ⟩⊗n for all
π. That is, ∣ψ⟩⊗n are elements of the symmetric subspace

Symn
(Cd) = {∣Φ⟩ ∈ (Cd)⊗n ∶ Rπ ∣Φ⟩ = ∣Φ⟩}.

The symmetric subspace is also known as the n-particle sector of the bosonic Fock space for d modes.
Given an arbitrary vector ∣Φ⟩ ∈ (Cd)⊗n, we can always symmetrize it to obtain a vector in the

symmetric subspace. Indeed, let us define the symmetrizer

Πn =
1

n!
∑
π∈Sn

Rπ

This operator is the projector on the symmetric subspace. Let’s verify this: (i) If ∣Φ⟩ is in the
symmetric subspace then Πn ∣Φ⟩ = ∣Φ⟩:

Πn ∣Φ⟩ =
1

n!
∑
π∈Sn

Rπ ∣Φ⟩ =
1

n!
∑
π∈Sn

∣Φ⟩ = ∣Φ⟩ .

(ii) For any vector ∣Φ⟩ ∈ (Cd)⊗n, the vector ∣Φ̃⟩ = Πn ∣Φ⟩ is in the symmetric subspace:

Rτ ∣Φ̃⟩ = Rτ(Πn ∣Φ⟩) = Rτ
1

n!
∑
π∈Sn

Rπ ∣Φ⟩ =
1

n!
∑
π∈Sn

Rτπ ∣Φ⟩ =
1

n!
∑
π′∈Sn

Rπ′ ∣Φ⟩ = Πn ∣Φ⟩ = ∣Φ̃⟩ .

Here, we used that as π ranges over all permutations, so does π′ = τπ (indeed, we obtain any π′

exactly from π = τ−1π′).
In particular, we can obtain a basis of the symmetric subspace by taking a basis ∣i⟩ of Cd,

considering a tensor product basis element ∣i1, . . . , in⟩, and symmetrizing. The result does not depend
on the order of the elements, but only on the number of times ti = #{ik = i − 1}. Thus Symn(Cd)
has the occupation number basis

∥t1, . . . , td⟫ ∝ Πn(∣1⟩
⊗t1 ⊗ . . .⊗ ∣d⟩⊗td), (2.5)

where ti ≥ 0 and ∑i ti = n.
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Example (n=2,d=2). A basis of Sym2(C2) is given by

∥2,0⟫ = ∣00⟩ , ∥1,1⟫ =
1

√
2
(∣10⟩ + ∣01⟩) , ∥0,2⟫ = ∣11⟩ .

Note that we can complete this to a basis of C2 ⊗ C2 by adding the antisymmetric singlet state
(∣10⟩ − ∣01⟩)/

√
2. It is true more generally that (Cd)⊗2 = Sym2(Cd) ⊕⋀2(Cd).

In general, there are (
n+d−1
n

) such basis vectors and therefore

dim Symn
(Cd) = tr Πn = (

n + d − 1

n
) =

(n + d − 1)!

n!(d − 1)!
.

A resolution of the identity for the symmetric subspace

The reason why we studied the symmetric subspace is that it contains the states ∣ψ⟩⊗n that arise in
our estimation problem. Not every vector in Symn(Cd) is of this form – for example, 1√

2
(∣01⟩ + ∣10⟩)

isn’t. Moreover, the ∣ψ⟩⊗n are not orthogonal. Nevertheless, we have the following alternative
formula for the projection onto the symmetric subspace:

Π′
n = (

n + d − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n . (2.6)

The integral requires some explanation: We integrate over all unit vectors ∣ψ⟩ ∈ Cd, and the measure
dψ is the unique probability measure that is invariant under the unitary group U(d). That is,
expectation values do not change when we substitute ∣ψ⟩ ↦ U ∣ψ⟩, where U is a unitary d × d matrix.
Sometimes this measure is called the Haar measure. (Concretely, we can think of the ∣ψ⟩ as unit
vectors in S2d−1 and the Haar measure can be realized as the unique rotation invariant measure on
that sphere.) (Mathematically speaking, I am somewhat conflating the vectors ∣ψ⟩ and the pure
states ∣ψ⟩ ⟨ψ∣ – but if this concerns you then you know how to fix it!) For example, the invariance
property immediately implies the following:

Π′
n = U

⊗nΠ′
nU

†,⊗n, or U⊗nΠ′
n = Π′

nU
⊗n (2.7)

One way of interpreting eq. (2.6) is that the vectors ∣ψ⟩⊗n form an “overcomplete basis” of the
symmetric subspace. Indeed, if ∣Φ⟩ is an arbitrary vector then

∣Φ⟩ = Πn ∣Φ⟩ = (
d + n − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ⊗n∣Ψ⟩ = ∫ dψ cψ(Ψ) ∣ψ⟩⊗n ,

where cψ(Ψ) = (
d+n−1
n

) ⟨ψ⊗n∥Ψ⟩. This means that we can write ∣Φ⟩ as a linear combination of the
states ∣ψ⟩⊗n.

Another way to interpret eq. (2.6), though, is that it shows that

Qψ̂ = (
d + n − 1

n
) ∣ψ̂⟩

⊗n
⟨ψ̂∣

⊗n
(2.8)

defines a continuous POVM {Qψ̂} on the symmetric subspace! It is this so-called uniform POVM
that we will use to solve our estimation problem!
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2.3 Pure state estimation

We will now solve the problem of pure state estimation (cf. Chiribella, 2010, Brandao et al., 2016,
Harrow, 2013). Recall that we are given n copies of some ∣ψ⟩⊗n. To obtain a good estimate, we want
to measure the uniform POVM (2.8).

How do we quantify the goodness of this strategy? There are several options, but the one that is
most natural in the present context is to consider the overlap squared, ∣⟨ψ∣ψ̂⟩∣2, between estimate
and true state. We will in fact look at a slightly more general figure of merit, namely ∣⟨ψ∣ψ̂⟩∣2k for
some fixed k > 0, since this is just as easy and we will use it in Tuesday’s lecture.

Remark. If k > 1 then this is a more stringent figure of merit since unequal states become more
orthogonal in this way: ∣⟨ψ∣ψ̂⟩∣2k < ∣⟨ψ∣ψ̂⟩∣2.

Remark. The overlap has a good operational meaning: In problem 1.2, you will show that two quan-
tum states with overlap close to one are indeed almost indistinguishable by any possible measurement.

Let us compute the expected value of ∣⟨ψ∣ψ̂⟩∣2k (the average is over the measurement outcome
ψ̂):

E [∣⟨ψ∣ψ̂⟩∣2k] = ∫ dψ̂ ⟨ψ⊗n∣Qψ̂ ∣ψ
⊗n

⟩ ∣⟨ψ∣ψ̂⟩∣2k

= (
n + d − 1

n
)∫ dψ̂ ∣⟨ψ∣ψ̂⟩∣2(k+n)

= (
n + d − 1

n
) ⟨ψ⊗(k+n)

∣ (∫ dψ̂ ∣ψ̂⟩
⊗(k+n)

⟨ψ̂∣
⊗(k+n)

) ∣ψ⊗(k+n)
⟩

= (
n + d − 1

n
)(
n + k + d − 1

n + k
)

−1

⟨ψ⊗(k+n)
∣Πn+k∣ψ

⊗(k+n)
⟩

= (
n + d − 1

n
)(
n + k + d − 1

n + k
)

−1

=
(n + d − 1)!

n!

(n + k)!

(n + k + d − 1)!
=

(n + d − 1) . . . (n + 1)

(n + k + d − 1) . . . (n + k + 1)

≥ (
n + 1

n + k + 1
)
d−1

= (1 −
k

n + k + 1
)

d−1

≥ 1 −
k(d − 1)

n + k + 1
≥ 1 −

kd

n
.

(2.9)

The first equality holds because ⟨ψ⊗n∣Qψ̂ ∣ψ
⊗n⟩ is the probability density of the measurement outcome

ψ̂, as we know from eq. (2.3). For the second equality, we plugged in the definition of the POVM
element eq. (2.8). The third is just some simple manipulation using linearity of the integral, and the
fourth follows by plugging in the formula for the projector onto the symmetric subspace Symn+k(Cd).
The rest are some simple inequalities that I explained in class.

Success! We have shown that the uniform POVM (2.8) gives us a very good estimate of ∣ψ⟩ as
soon as n≫ d (if we measure its goodness by the overlap squared, corresponding to k = 1).

Remark. Later in this course we will learn how to go beyond the symmetric subspace and solve the
state estimation problem for general, not necessarily pure quantum states (lecture 7).
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Representation theory, density operators, partial trace
Lecture 3 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

In this lecture, we’ll revisit some fundamentals: First, we discuss representation theory more
systematically and prove the “resolution of the identity” formula (2.6) from last lecture. Then we
recall the notion of a density operator and discuss the partial trace, which allows us to define the
quantum state of subsystems.

3.1 Representation theory primer

A (finite-dimensional unitary) representation of a group G is given by (i) a (finite-dimensional)
Hilbert space H, and (ii) unitary operators Rg on H for every group element g ∈ G such that the
following two laws are satisfied:

R1 = 1, Rgh = RgRh

Every group has a trivial representation, given by identity operators Rg = 1H acting on a one-
dimensional space H. We will often simply speak of “the representation H”, but we always have
associated operators Rg in mind. All representations that we will ever study in this course will be
unitary and finite-dimensional.

A useful way of understanding a representation is to decompose it into smaller building blocks.
Suppose that H̃ ⊆ H is an invariant subspace, i.e., a subspace such that RgH̃ ⊆ H̃ for all g ∈ G. Then,
the orthogonal complement H̃⊥ is also an invariant subspace! Indeed, if ∣φ⟩ ∈ H̃⊥ then, for all ∣ψ⟩ ∈ H̃,

⟨ψ∣Rg ∣φ⟩ = ⟨R†
gψ∣φ⟩ = 0,

since R†
g ∣ψ⟩ ∈ H̃; this shows that Rg ∣φ⟩ ∈ H̃⊥. As a consequence, the operators Rg are block diagonal

with respect to the decomposition H = H̃ ⊕ H̃⊥, i.e.,

Rg = (
R̃g 0

0 R̃⊥g
) .

Note that the block R̃g is a representation on H̃ and the block R̃⊥g is a representation on H̃⊥. Thus
we have successfully decomposed the given representation into two “smaller” representations. We can
apply the same reasoning separately to H̃ and H̃⊥, and continue until we arrive at a decomposition

H = H1 ⊕H2 ⊕ . . .⊕Hm (3.1)

that cannot be refined further. That is, the building blocks Hj have no interesting invariant subspaces
(i.e., the only invariant subspaces are Hj itself and {0}, neither of which allow us to decompose
further). We call such representations Hj irreducible representations – or “irreps”.
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How can we compare different representations? An intertwiner J ∶H → H′ is a map such that

JRg = R
′
gJ

(hence the name). If there exists an invertible intertwiner J then we say that the two representations
H and H′ are equivalent, and write H ≅ H′. This invertible intertwiner can always be chosen to be a
unitary operator, and we will always assume that all invertible intertwiners under consideration are
unitary operators. Note that in this case we have

JRgJ
−1

= JRgJ
†
= R′

g

so the operators {Rg} and {R′
g} differ only by an overall “base change”. We will use the notation

H ≅ H′ and Rg ≅ R′
g.

Example. An example that you all know well is the group SU(2) of unitary 2 × 2-matrices with
unit determinant, which arises in the study of rotational symmetries of quantum systems. Up to
equivalence, its irreducible representations are labeled by their spin

j ∈ {0,
1

2
,1,

3

2
, . . .}.

E.g., V0 is the one-dimensional trivial representation (also called the singlet), V1/2 ≅ C2, V1 is the
triplet representation, etc. We used the decomposition of SU(2)-representations into irreducibles
briefly in section 1.2 to find a qubit, and will revisit it in greater detail in a later lecture.

Example 3.1. The permutation group S3 has three irreducible representations (up to equivalence):

(i) The trivial representation W = C ∣0⟩, with Rπ ∣0⟩ = ∣0⟩.

(ii) The sign representation W = C ∣0⟩, with Rπ ∣0⟩ = signπ ∣0⟩.

Here signπ denotes the sign of a permutation π ∈ Sn, defined to be −1 for transpositions (“swaps”)
i↔ j. It is extended to arbitrary permutations by the requirement that signπτ = (signπ)(sign τ).
(This assignment is well-defined, as you may verify, e.g., in the special case S3.)

Now consider the representation H = C3, with Rπ ∣i⟩ = ∣π(i)⟩. It is not itself irreducible. However:

(iii) The invariant subspace

W = {α ∣0⟩ + β ∣1⟩ + γ ∣2⟩ ∶ α + β + γ = 0} ⊆ C3

is a two-dimensional irreducible representation of S3.

Its orthogonal complement is W ⊥ = C(∣0⟩ + ∣1⟩ + ∣2⟩) ≅W . Hence:

C3
≅W ⊕W

The curious labeling of the irreps will become more clear when we discuss Schur-Weyl duality (see
remark 7.2).
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An important tool for us is the following mathematical result, known as Schur’s lemma.

Lemma 3.2 (Schur). Let J ∶H → H′ be an intertwiner between irreducible representations Rg, R′
g.

(i) Either J is invertible (and hence H ≅ H′) or J = 0.

(ii) If H = H′ and Rg = R′
g then J ∝ 1H (i.e., any self-intertwiner is necessarily a multiple of the

identity operator).

Schur’s lemma shows that intertwiners between irreducible representations are rigidly determined.
In particular, there are no nonzero intertwiners between inequivalent irreducible representations. We
will not prove this result – you are encouraged to look it up in your favorite textbook (e.g., Fulton
and Harris, 2013) – but we will profitably use it many times in this class.

Normal forms of representations

Now suppose that someone handed us a list of irreducible representations of a group G. Let us write
Vj for the Hilbert space, R(j)

g for the operators, and j runs over some index set J that labels the
different irreps. We assume that the list is complete (i.e., that any other irreducible representation is
equivalent to some Vj) and that it is irredundant (i.e., that Vj /≅ Vj′ if j ≠ j′). We just saw two such
lists for G = SU(2) and G = S3, respectively.

Then, if H is an arbitrary representation of G, we can first decompose as in eq. (3.1). Since each
Hk in eq. (3.1) is irreducible, it must be equivalent to some Vj – say Hk ≅ Vjk . Thus:

H ≅ Vj1 ⊕ . . .⊕ Vjm (3.2)

Suppose that nj is the number of times that Vj appears in this list, i.e., nj = #{k ∶ jk = j}. Let us
reorder (3.2) according to the different values of j:

H ≅⊕
j∈J

Vj ⊕ . . .⊕ Vj
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

nj times

(3.3)

The numbers nj are uniquely determined – as a consequence of Schur’s lemma! They fully char-
acterize the representation H, up to equivalence. A useful alternative way of writing down the
decomposition (3.3) is as follows:

H ≅⊕
j∈J

Vj ⊗Cnj , (3.4)

where G acts on the right-hand side by the block-diagonal matrices

⊕
k

R(j)
g ⊗ 1nj .

(We use the notation ⊕ to stress that they are block diagonal with respect to the direct sum
decomposition of the Hilbert space that they act on, i.e., eq. (3.4).) We may think of eq. (3.3) or
eq. (3.4) as a “normal form” of the representation H.

Remark. The fact that unitary representation H can be brought into a normal form is completely
analogous to how, e.g., a unitary or Hermitian matrix can always be diagonalized.

Representation theory tells us about the list of irreducible representations for a given group G
and how to determine the decomposition (3.3) or (3.4) of a representation into its irreducible pieces
(in particular, how to calculate the numbers nj).
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Proof of the resolution of the identity for the symmetric subspace

Schur’s lemma allows us to at last deduce eq. (2.6). To see this, we first observe that the space

(Cd)⊗n

is not only a representation of Sn, as discussed in section 2.2, but also of the unitary group U(d).
Its elements are the unitary d × d-matrices U , and its representation on (Cd)⊗n is defined as follows:

TU = (U ⊗ . . .⊗U) = U⊗n

Next week, we will learn much more about the way (Cd)⊗n decomposes with respect to the groups
Sn and U(d). For today, we only note that the two group actions commute:

RπTU = TURπ, or [Rπ, TU ] = 0. (3.5)

Let us verify this explicitly:

RπTU(∣ψ1⟩ ⊗ . . .⊗ ∣ψ1⟩) = Rπ(U ∣ψ1⟩ ⊗ . . .⊗U ∣ψ1⟩)

= U ∣ψπ−1(1)⟩ ⊗ . . .⊗U ∣ψπ−1(n)⟩ = TURπ(∣ψ1⟩ ⊗ . . .⊗ ∣ψ1⟩).

Equation (3.5) implies at once that the symmetric subspace Symn(Cd) is an invariant subspace for
U(d). Indeed, if ∣Φ⟩ ∈ Symn(Cd) then Rπ(TU ∣Φ⟩) = TU(Rπ ∣Φ⟩) = TU ∣Φ⟩ and so TU ∣Φ⟩ ∈ Symn(Cd).

Importantly, the symmetric subspace is in fact an irreducible representation of U(d). You will
show this in problem 2.3. It is now easy to see that the operator Π′

n defined in eq. (2.6) is equal to
the projector onto the symmetric subspace. First, note that eq. (2.7) asserts precisely that Π′

n is a
self-intertwiner, i.e., TUΠ′

n = Π′
nTU (this follows from the invariance of the integral under substituting

∣ψ⟩ ↦ U ∣ψ⟩). Second, note that Π′
n is supported only on the symmetric subspace. We may therefore

safely think of Π′
n as an operator from Symn(Cd) to Symn(Cd). But since the symmetric subspace

is irreducible, Schur’s lemma tells us that Π′
n must be proportional to the identity operator on

Symn(Cd), i.e., to Πn. Since moreover

tr Π′
n = (

n + d − 1

n
)∫ dψ tr [∣ψ⟩⊗n ⟨ψ∣⊗n]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= (
n + d − 1

n
) = tr Πn,

we conclude that Πn = Π′
n.

3.2 Density operators and mixed states

Before we proceed with entanglement and symmetries, let us talk a bit about ensembles of quantum
states. Many of you know density operators and partial traces, but I hope this might be a good
reminder for everyone.

Suppose that {pi, ∣ψi⟩} is an ensemble of quantum states on some Hilbert space H, i.e., we have
the state ∣ψi⟩ with probability pi. If X is an observable then we can compute its expectation value
by

⟨X⟩ = ∑
i

pi ⟨ψi∣X ∣ψi⟩ = ∑
i

pi tr [∣ψi⟩ ⟨ψi∣X] = tr

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑
i

pi ∣ψi⟩ ⟨ψi∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ρ

X

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= tr[ρX].
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The operator ρ is called a density operator, or a density matrix, or simply a quantum state on H.
It safisfies ρ ≥ 0 and trρ = 1, and any such operator arises from some ensemble of quantum states
(think of the spectral decomposition!). The Born rule for density operators reads

Pr(outcome x) = tr[ρQx],

as follows from our preceding calculation.
If ρ = ∣ψ⟩ ⟨ψ∣ then we say that it is a pure state (and it is not uncommon to simply write ρ = ψ in

this case). Otherwise, ρ is called a mixed state (but we will often be sloppy and say “mixed state”
when we really should say “density operator”). Note that ρ is pure if and only if rkρ = 1, or if ρ2 = ρ,
or if the eigenvalue spectrum is {1,0}.

Example 3.3 (Warning!). In general the ensemble that determines a density operator is not unique.
E.g., τ = 1/2 can be written in an infinite number of ways:

τ =
1

2
(∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) =

1

2
(∣+⟩ ⟨+∣ + ∣−⟩ ⟨−∣) = . . . .

The states τH = 1H/dimH are known as maximally mixed states. They are the analogues of
uniform distributions in probability theory.

More generally, if p(x1, . . . , xn) is a probability distribution then we may consider the ensemble
{p(x1, . . . , xn), ∣x1⟩ ⊗ . . .⊗ ∣xn⟩}. The corresponding density operator is

ρX1,...,Xn = ∑
x1,...,xn

p(x1, . . . , xn) ∣x1⟩ ⟨x1∣ ⊗ . . .⊗ ∣xn⟩ ⟨xn∣ (3.6)

and we call such a state a classical state. If all probabilities p(x1, . . . , xn) are the same then ρX1,...,Xn

is a maximally mixed state, ρ = τ . In a later problem set, you will explore more generally how
classical probability theory can be embedded into quantum mechanics.

In quantum physics, density operators arise in a number of places: As statistical ensembles (e.g.,
Gibbs states in statistical quantum physics), when describing noisy sources, . . . – but importantly,
also when describing the state of subsystems, as we will discuss in the following.

Reduced density matrices and partial trace

Suppose that ρAB is a quantum state on HA ⊗HB and XA an observable on HA. The axioms of
quantum mechanics tell us XA ⊗ 1B is the appropriate observable on the joint system HA ⊗HB.
Let’s calculate the expectation value of this observable in the state ρAB:

⟨XA⟩ = tr[ρAB(XA ⊗ 1B)] = ∑
a,b

⟨a, b∣ρAB(XA ⊗ 1B)∣a, b⟩

= ∑
a,b

(⟨a∣ ⊗ ⟨b∣)∣ρAB(XA ⊗ 1B)(∣a⟩ ⊗ ∣b⟩)

= ∑
a,b

⟨a∣ (1A ⊗ ⟨b∣)ρAB(XA ⊗ 1B)(1A ⊗ ∣b⟩) ∣a⟩

= ∑
a,b

⟨a∣ (1A ⊗ ⟨b∣)ρAB (1A ⊗ ∣b⟩)XA∣a⟩

= ∑
a

⟨a∣∑
b

(1A ⊗ ⟨b∣)ρAB (1A ⊗ ∣b⟩)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶trB[ρAB]

XA∣a⟩
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The operation trB just introduced is called the partial trace over B. If ρAB is a quantum state, then
trB[ρAB] is called the reduced density operator or the reduced density matrix ρA of ρAB. We will
often denote it by ρA = trB[ρAB] (even though this can at times seem ambiguous). Dually, ρAB is
said to be an extension of ρA. By construction,

tr[ρAB(XA ⊗ 1B)] = tr[ρAXA], (3.7)

and so the reduced density operator ρA contains all information necessary to evaluate observables
on A. It therefore faithfully describes the state of the subsystem A.

We can also compute partial traces of operator that are not quantum states: If MAB is an
arbitrary operator on HA ⊗HB then its partial trace over B is defined just as before,

trB[MAB] = ∑
b

(1A ⊗ ⟨b∣)MAB (1A ⊗ ∣b⟩) .

(However, if MAB is not a state then we will never denote this partial trace by MA.)
The following useful rule tells us how to compute partial traces of tensor product operators

MA ⊗NB and justifies the term “partial trace”:

trB[MA ⊗NB] =MA tr[NB] (3.8)

It follows directly from the definition:

trB[MA ⊗NB] = ∑
b

(1A ⊗ ⟨b∣) (MA ⊗NB) (1A ⊗ ∣b⟩) =MA∑
b

⟨b∣NB ∣b⟩ =MA tr[NB].

Other useful properties are

• trB[(MA ⊗ 1B)XAB(M ′
A ⊗ 1B)] =MA trB[OAB]M ′

B,

• trB[(1⊗MB)OAB] = trB[OAB(1⊗MB)].

Remark. A useful convention that you will often find in the literature is that tensor products with
the identity operator are omitted. E.g., instead of XA ⊗ 1B we would write XA, since the subscripts
already convey the necessary information. Thus, instead of eqs. (3.7) and (3.8) we would write

tr[ρABXA] = tr[ρAXA],

trB[MANB] =MA tr[NB]

which is arguably easier to read.

Example (Warning!). Even if ρAB is a pure state, ρA can be mixed. For example, consider the
maximally entangled state ∣ψ⟩AB = 1√

2
(∣00⟩ + ∣11⟩). Then,

ρAB = ∣ψ⟩ ⟨ψ∣AB =
1

2
(∣00⟩ + ∣11⟩) (⟨00∣ + ⟨11∣)

=
1

2
(∣00⟩ ⟨00∣ + ∣11⟩ ⟨00∣ + ∣00⟩ ⟨11∣ + ∣11⟩ ⟨11∣)

=
1

2
(∣0⟩ ⟨0∣ ⊗ ∣0⟩ ⟨0∣ + ∣1⟩ ⟨0∣ ⊗ ∣1⟩ ⟨0∣ + ∣0⟩ ⟨1∣ ⊗ ∣0⟩ ⟨1∣ + ∣1⟩ ⟨1∣ ⊗ ∣1⟩ ⟨1∣) ,

and so, using eq. (3.8),

ρA = trB[∣ψ⟩ ⟨ψ∣AB] =
1

2
(∣0⟩ ⟨0∣ + ∣1⟩ ⟨1∣) .

Thus ρA is a mixed state – in fact, the maximally mixed state τA introduced previously in example 3.3.
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The preceding example was not an accident. Every pure state ∣ψ⟩AB ∈ HA ⊗HB has a so-called
Schmidt decomposition

∣ψ⟩AB = ∑
i

si ∣ei⟩A ⊗ ∣fi⟩B ,

where si > 0 and the ∣ei⟩A and ∣fi⟩B are sets of orthonormal vectors in HA and HB, respectively.
Note:

ρA = ∑
i

s2
i ∣ei⟩ ⟨ei∣A and ρB = ∑

i

s2
i ∣fi⟩ ⟨fi∣B .

Thus the eigenvalues of the reduced density matrices are directly related to the cofficients si.
The Schmidt decomposition is a very important tool that we already briefly met in the fine-print of

lecture 1. For one, it helps us to understand entanglement in pure states: E.g., if ∣ψ⟩AB = ∣ψ⟩A⊗∣ψ⟩B
is a product state then the reduced density matrices are pure. Conversely, if the reduced density
matrices of a pure state ∣ψ⟩AB are mixed then this is a signature of entanglement. You will discuss
this in more detail on problem 2.1. (This also justifies why quantities such as entanglement entropies
that some of you might already know might be good entanglement measures (only) for pure states.)

We mention two last important facts that you will prove in problem 2.2:

(i) Any mixed state ρA has a purification: That is, there exists a pure state ∣ψAB⟩ ∈ HA ⊗HB,
with HB an auxiliary Hilbert space, such that

ρA = trB[∣ψAB⟩ ⟨ψAB ∣].

Remark. This justifies why in lecture 1 we were allowed to only consider quantum strategies that
involved pure states and observables. At the expense of adding an auxiliary Hilbert space, we can always
replace mixed states by pure states and generalized measurements by measurements of observables
(you proved the latter in problem 1.4).

(ii) If ρA = ∣ψ⟩A ⟨ψ∣A is pure then any extension ρAB is necessarily a product, i.e., ρAB = ρA ⊗ ρB –
whether ρAB is pure or mixed. We already mentioned this fact when discussing the privacy of
random bits in lecture 1.
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PHYSICS 491: Symmetry and Quantum Information April 13, 2017

Mixed state entanglement, monogamy of entanglement
Lecture 4 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Monogamy of entanglement is the idea that if two systems are strongly entangled then each of
them cannot be entangled very much with other systems. For example, suppose that

ρAB = ∣Ψ⟩ ⟨Ψ∣AB

where ∣Ψ⟩AB is in a pure state – say, a maximally entangled state. Since ρAB is pure, any extension
ρABC must factorize,

ρABC = ρAB ⊗ ρC ,

as we discussed at the end of lecture 3. Thus A and B are both completely uncorrelated with C
(fig. 3). In particular, ρAC = ρA ⊗ ρC and ρBC = ρB ⊗ ρC are product states.

Remark. While correct, the above analysis should perhaps be taken with a grain of salt. Since it
only relied on ρAB being in a pure state, it is also applicable to, say, ψAB = ∣0⟩A ⊗ ∣0⟩B – which is a
product state, not an entangled state! Nevertheless, the conclusion remains that also in this case ρAC
and ρBC have to product states. However, this is a consequence of ρA = ∣0⟩ ⟨0∣A and ρB = ∣0⟩ ⟨0∣B
being pure, not of entanglement between A and B.

Does monogamy hold more generally and can it be made quantitative? Indeed this is possible –
and we will see that symmetry is the key.

4.1 Mixed state entanglement

First, though, we will have to talk about what it means for a quantum state to be entangled. For
pure states ∣ψ⟩AB, the answer is simple: A state is entangled if and only if is not a tensor product,

∣ψ⟩AB ≠ ∣ψ⟩A ⊗ ∣ψ⟩B .

For mixed states, however, there are non-product quantum states that should nevertheless not be
considered entangled.

Figure 3: Illustration of monogamy of entanglement.
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Example 4.1 (Classical joint distributions). Let p(x, y) be a probability distribution of two random
variables. Following (3.6), we construct a corresponding density operator

ρAB = ∑
x,y

p(x, y) ∣xy⟩AB ⟨xy∣AB = ∑
x,y

p(x, y) ∣x⟩ ⟨x∣A ⊗ ∣y⟩ ⟨y∣B .

In general, ρAB is not a product state (indeed, this is only the case if the random variables are
statistically independent). Yet this corresponds to classical correlations, not to quantum entanglement.
For example, if Alice and Bob know the outcome of a fair coin flip, their state would be described by
the density operator

ρAB =
1

2
(∣00⟩ ⟨00∣AB + ∣11⟩ ⟨11∣AB) ,

that is not of product form.

This suggests the following general definition: We say that a quantum state ρAB is entangled if
it is not a mixture of product states:

ρAB ≠ ∑
i

piρ
(i)
A ⊗ ρ

(i)
B . (4.1)

Here, {pi} is an arbitrary probability distribution and the ρ(i)A and ρ(i)B . We say that states of the
right-hand side form are separable, or simply unentangled. If ρAB = ∣ψ⟩ ⟨ψ∣AB is a pure state then it
is separable exactly if it is a product, ∣ψ⟩AB = ∣ψ⟩A ⊗ ∣ψ⟩B.

Remark. There are more separable states than the classical states in example 4.1. This is because
we do not demand the operators {ρ

(i)
A } and {ρ

(i)
B } in eq. (4.1) are orthogonal.

Separable states have a pleasant operational interpretation. They are the largest class of quantum
states σAB that can be created by Alice and Bob in their laboratories if allow Alice and Bob to
perform arbitrary quantum operations in their laboratory but restrict their communication with
each other to be classical.

Let us denote the set of all density operators on HA ⊗HB by

QAB = {ρAB ≥ 0, trρAB = 1}

and the subset of separable states by

SEPAB = {ρABseparable}.

Both sets are convex. As a consequence of SEPAB being convex, it can be fully characterized by
separating hyperplanes, i.e., hyperplanes that contain all separable state on one side (fig. 4). These
hyperplanes gives rise to entanglement witness – one-sided tests that can be used to certify that a
state is entangled. You will explore them in problem 2.4.

Yet, it is unfortunately a difficult problem to decide if a mixed state is entangled or not. In fact,
the problem of deciding whether a given quantum state ρAB is separable is NP-hard. This implies
that we are unlikely to ever find an efficient (polynomial-time) algorithm. In practice, the situation
is less bleak since we have ways of testing whe a quantum state is approximately separable (see
below).
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Figure 4: The set of separable states SEP is a convex subset of the set of all quantum states
Q. Hyperplanes (such as the pink one) that contain all separable states on one side give rise to
entanglement witnesses.

4.2 Monogamy and symmetry

We are now ready to study the monogamy of entanglement in more detail. We will consider two
situations where we would expect monogamy to play a role:

De Finetti theorem

First, consider a permutation-symmetric state

∣Ψ⟩A1...An
∈ Symn

(Cd).

Note that all the reduced density matrices ρAiAj are the same. Thus, every pair of particles is
entangled equally, and so we would expect that by monogamy they therefore are not entangled “very
much” (fig. 5, (a)).

The quantum de Finetti theorem (König and Renner, 2005) asserts that our expectation is indeed
correct:

ρA1...Ak ≈ ∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k (4.2)

as long as k ≪ (n − k)/d. Here, p(ψ) is some probability density over the set of pure states that
depends on the state ρ. In particular, ρA1A2 is approximately a mixture of product states for large n.

Example (Warning). The GHZ state ∣γ⟩A1A2A3
= (∣000⟩ + ∣111⟩)/

√
2 is a state in the symmetric

subspace Sym3(C2). Note that, e.g., the first particle is maximally entangled with the other two – so
clearly it is not true that permutation symmetric states are unentangled. However, if we look at the
reduced state of two particles then we find

ρA1A2 =
1

2
(∣00⟩ ⟨00∣ + ∣11⟩ ⟨11∣) =

1

2
∣0⟩⊗2

⟨0∣⊗2
+

1

2
∣1⟩⊗2

⟨1∣⊗2 .

Note that ρA1A2 is a mixture of product states. This shows that the partial trace is indeed necessary.

Permutation symmetric states arise naturally in mean-field systems. The ground state ∣E0⟩ of a
mean-field Hamiltonian H = ∑1≤i<j≤n hij is necessarily in the symmetric subspace – provided that
the ground space is nondegenerate and that n is larger than the single-particle Hilbert space. Thus,
the de Finetti theorem shows that, locally, ground states of mean field systems look like mixtures of
product states – a property that is highly useful for their analysis. For example, it allows us to use
the density p(ψ) as a variational ansatz.
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Figure 5: (a) In a permutation symmetric state, any pair of particles is entangled in the same way
and should therefore not be entangled very much. (b) Similarly, if Alice is entangled with many
Bobs in the same way then she is not entangled very much with each of them.

Extendibility hierarchy

A closely related situation is the following: Suppose that ρAB is a quantum state that has an
extension ρAB1...Bn such that

ρABi = ρAB (∀i, j)

(fig. 5, (b)). We say that ρAB has an n-extension. Thus A is equally entangled with all Bi and so we
would expect that ρAB is not entangled “very much”. Indeed, it is true that, for large n,

ρAB ≈ ∑
i

piρ
(i)
A ⊗ ρ

(i)
B ,

i.e., ρAB is again approximately a mixture of product states.
In contrast to situation (1), however, there is no longer a symmetry requirement between A and

B, i.e., this reasoning applies to general states ρAB. It turns out that one in this way obtains a
hierarchy of efficient approximates test for separability (Doherty et al., 2002, 2004). Indeed, as you
will discuss in problem 2.5, if a state ρAB is n-extendible then it is O(1/n)-close to being a separable
state (fig. 6).

4.3 The trace distance between quantum states

Before we proceed, we should make more precise what we meant when we wrote “≈” above. Let ρ
and σ be two density operators on some Hilbert space H. We define their trace distance to be

T (ρ, σ) ∶= max
0≤Q≤1H

tr[Q(ρ − σ)].

The trace distance is a metric, and so in particular satisfies the triangle inequality. It has the
following alternative expression

T (ρ, σ) =
1

2
∥ρ − σ∥1,

where we used the 1-norm, which for general Hermitian operators ∆ with spectral decomposition ∆ =

∑i λi ∣ei⟩ ⟨ei∣ is defined by ∥∆∥1 = ∑i∣λi∣. The trace distance has a natural operational interpretation
in terms of the optimal probability of distinguishing ρ and σ by a POVM measurement. You discussed
the trace distance in problem 1.3 in the special case of pure states, but the above conclusions hold
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Figure 6: The extendibility hierarchy: If a state is n extendible then it is O(1/n)-close to being
separable.

in general. There, you also proved that, for pure states ρ = ∣φ⟩ ⟨φ∣ and σ = ∣ψ⟩ ⟨ψ∣, the trace distance
and overlap are related by the following formula:

T (ρ, σ) =
√

1 − ∣⟨φ∣ψ⟩∣2 (4.3)

Remark. If X is an arbitrary observable then

∣tr[Hρ] − tr[Hσ]∣ ≤ 2T (ρ, σ)∥H∥∞, (4.4)

where ∥H∥∞ denotes the operator norm of H, defined as the maximal absolute value of all eigenvalues
of H. Indeed, we can always write H = Q −Q′< where 0 ≤ Q,Q′ ≤ ∥H∥∞, and so

∣tr[Hρ] − tr[Hσ]∣ ≤ ∣tr[Qρ] − tr[Qσ]∣ + ∣tr[Q′ρ] − tr[Q′σ]∣ ≤ 2∥H∥∞T (ρ, σ).

Equation (4.4) quantifies the difference in expectation values for states with small trace distance.
(Note that this gap gap can be arbitrarily large since we can always rescale our observable. This is
reflected by the factor ∥H∥∞.)rescale our observables.

4.4 The quantum de Finetti theorem

We will now prove the de Finetti theorem (4.2), following Brandao et al. (2016). Let

∣Φ⟩A1...An
∈ Symn

(Cd),

where n is the number of particles and d the dimension of the single-particle Hilbert space.
The basic idea is the following: Suppose that we measure with the uniform POVM (2.8) on the

last n − k systems of ρ = ∣Φ⟩ ⟨Φ∣. Then, if the measurement outcome is some ∣ψ⟩, we would expect
that the first k systems are likewise in the state ∣ψ⟩⊗k, at least on average, since the overall state is
permutation symmetric among all n subsystems.

Let us try to implement this idea. Since ∣Φ⟩ ∈ Symn(Cd), it is in particular symmetric under
permutations of the last n − k subsystems. Hence, ∣Φ⟩ = (1k ⊗Πn−k) ∣Φ⟩, and so

ρA1...Ak = trAk+1...An [∣Φ⟩ ⟨Φ∣] = trAk+1...An [(1k ⊗Πn−k) ∣Φ⟩ ⟨Φ∣]

= (
n − k + d − 1

n − k
)∫ dψ (1k ⊗ ⟨ψ∣⊗(n−k)

) ∣Φ⟩ ⟨Φ∣ (1k ⊗ ∣ψ⟩⊗(n−k)
)

= ∫ dψp(ψ) ∣Vψ⟩ ⟨Vψ ∣ .
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In the second to last step, we have inserted the resolution of identity (2.6), and in the last step, we
have introduced introduced unit vectors ∣Vψ⟩ and numbers p(ψ) ≥ 0 such that

√
p(ψ) ∣Vψ⟩ = (

n − k + d − 1

n − k
)

1/2
(1k ⊗ ⟨ψ∣⊗(n−k)

) ∣Φ⟩ . (4.5)

Note that p(ψ) is a probability density. Indeed, ∫ dψ p(ψ) = trρ = 1, since the overall state is
normalized. We would now like to prove that

ρA1...Ak = ∫ dψ p(ψ) ∣Vψ⟩ ⟨Vψ ∣ ≈ ∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k =∶ ρ̃A1...Ak , (4.6)

based on the intuition expressed above that on average the post-measurement states ∣Vψ⟩ are close
to ∣ψ⟩⊗k. Let us first consider the average overlap:

∫ dψ p(ψ) ∣⟨Vψ ∣ψ
⊗k

⟩∣
2
= ∫ dψ p(ψ) ⟨Vψ ∣ψ

⊗k
⟩ ⟨ψ⊗k∣Vψ⟩

= (
n − k + d − 1

n − k
)∫ dψ ⟨Φ∣ψ⊗n⟩ ⟨ψ⊗n∣ ∣Φ⟩⟩ = (

n − k + d − 1

n − k
)(
n + d − 1

n
)

−1

⟨Φ∣Πn∣Φ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= (
n − k + d − 1

n − k
)(
n + d − 1

n
)

−1

≥ 1 −
kd

n − k
.

In the second step, we inserted the definition of ∣Vψ⟩ from eq. (4.5). And the last inequality is
precisely (2.9), since there we bounded precisely the ratio of binomial coefficients that we are
interested in here (with n↦ n + k).

It remains to show that the two states ρ and ρ̃ in eq. (4.6) are close in trace distance. Indeed,

T (ρA1...Ak , ρ̃A1...Ak) ≤ ∫ dψ p(ψ)T (∣Vψ⟩ ⟨Vψ ∣ , ∣ψ⟩
⊗k

⟨ψ∣⊗k) = ∫ dψ
√

1 − ∣⟨Vψ ∣ψ⊗k⟩∣2

≤

√

∫ dψ (1 − ∣⟨Vψ ∣ψ⊗k⟩∣2) =

√

1 − ∫ dψ ∣⟨Vψ ∣ψ⊗k⟩∣2 ≤

√
kd

n − k
.

Here, we first applied the triangle inequality, then we used the relationship between trace distance
and fidelity for pure states in eq. (1.2), and the next inequality i Jensen’s inequality for the square
root function, which is concave. Thus we have proved the de Finetti theorem (4.2):

ρA1...Ak ≈ ∫ d(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k

up to error
√
kd/(n − k) in trace distance. Explicitly, the density p(ψ) that we used in our proof is

given by ⟨Φ∣1k ⊗Qψ ∣Φ⟩, where {Qψ} is the uniform POVM (2.8).

Beyond the symmetric subspace

Our intuition behind the de Finetti theorem only relied on the fact that the reduced density matrices
were all the same. But this is a feature that states on the symmetric subspace share with arbitrary
permutation-invariant states, i.e., states that satisfy

[Rπ, ρA1...An] = 0, or RπρA1...An = ρA1...AnRπ
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for all π ∈ Sn. Examples of permutation-invariant states are states on the antisymmetric subspace,
or tensor powers of mixed states such as ρ⊗n, which we will study in more detail next week.

A useful fact is that any permutation-invariant state ρA1...An has a purification on a symmetric
subspace: That is, there exists a pure state ∣Φ⟩(A1B1)...(AnBn) ∈ Symn(HA ⊗HB), where HB is some
auxiliary space, such that ρ(A1B1)...(AnBn) = ∣Φ⟩ ⟨Φ∣ is an extension of ρA1...An . The auxiliary space
HB can be chosen of the same dimension as HA.

If we apply the de Finetti theorem to such a purification, we find that

ρ(A1B1)...(AkBk) ≈ ∫ dψAB p(ψAB) ∣ψ⟩⊗kAB ⟨ψ∣⊗kAB

up to error d2k/(n− k), since now the single-particle Hilbert space has dimension dimHA ⊗HB = d2.
If we take a partial trace over the B systems, we obtain a mixture of product states (which can now
be mixed):

ρA1...Ak ≈ ∫ dψAB p(ψAB) trB[∣ψ⟩ ⟨ψ∣AB]
⊗k

Moreover, the trace distance never increases when we take the partial trace. Thus we have proved
the following: If ρA1...An is a permutation-invariant state on (Cd)⊗k then its reduced density matrices
can be approximated by mixtures of product states

ρA1...Ak ≈ ∫ dµ(ρ)ρ⊗k

up to error d2/(n− k) in trace distance. Here, dµ is some probability measure on the space of mixed
states that depends on the state ρ.

Nowadays, there are many variants of the de Finetti theorem that quantify the monogamy of
entanglement in interesting and useful ways. Surveying some of them could make for an interesting
course project.
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PHYSICS 491: Symmetry and Quantum Information April 18, 2017

Shannon theory, data compression, spectrum estimation
Lecture 5 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

5.1 A first glance at information theory: data compression

Imagine that Alice has acquired a biased coin, with heads coming up with p = 75% probability. She
is excited about her purchase and wants to let Bob know about the result of her coin flips. If the
flips the coin once, how many bits does she need to communicate the result to Bob? Clearly, she
needs at least one bit. Otherwise, since both outcomes are possible, she would make an error 25% of
the time.

Now suppose that Alice flips her coin not only once, but a large number of times – say n times.
She would still like to communicate the results of her coin flips to Bob. Clearly, Alice could send
over one bit immediately after each coin flip. Can she do better by waiting and looking at the whole
sequence of coin flips? If we assume that her coin flips are independent then we would expect that
heads will come up j ≈ pn times for large enough n. This suggests the following compression scheme:

• If the number of coin flips j is not within (p ± ε)n, Alice gives up and signals failure.

• Otherwise, she sends j over to Bob, as well as the index i of her particular sequence of coin
flips in a list Lj that contains all possible coin flips with j heads and n − j tails.

If our two protagonists have agreed beforehand on the lists Lj (you might call them a codebook),
then Bob will have no trouble decoding the sequence of coin flips – he merely looks up the i-th entry
in the list Lj . Note that, for any fixed ε > 0, the probability of failure in the first step is arbitrarily
small – this is a consequence of the strong law of large numbers.

Remark. If failure is not an option, Alice may instead send the uncompressed sequence of coin flips
instead of giving up. This leads to a similar analysis and will be left as an exercise.

What is the compression rate of this protocol? To send j, we need roughly (logn)/n bits per
coin flip, which is negligible for large n.1 How many sequences are there with j heads and n − j
tails? This is given by the binomial coefficient (

n
j
). Thus, to communicate the index i ∈ {1, . . . , (nj)},

Alice needs to send roughly 1
n log (

n
j
) bits per coin flip. To estimate this rate, we note that for any

x ∈ [0,1],

xj(1 − x)n−j(
n

j
) ≤ (x + (1 − x))n = 1

1Here and throughout the rest of these lecture notes, log denotes the logarithm to the base two.
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Figure 7: The binary entropy function h(p) defined in eq. (5.2).

and hence, choosing x = j
n ,

1

n
log (

n

j
) ≤ −

j

n
log

j

n
− (1 −

j

n
) log(1 −

j

n
). (5.1)

Since j
n ≈ p, the right-hand side is approximately equal to the binary (Shannon) entropy

h(p) ∶= −p log p − (1 − p) log(1 − p). (5.2)

See fig. 7 for a plot of the binary entropy function.
In total, the protocol sketched above will achieve a compression rate of roughly h(p) ≤ 1 bits per

coin flip. E.g., h(75%) = 0.81 – so Alice achieve savings of roughly of 19%. We can get arbitrarily
close to h(p) by decreasing ε, at the expense of n having to become larger and larger for the
probability of failure to vanish. It is not hard to see the compression rate h(p) is optimal. This
is Shannon’s famous noiseless coding theorem – it is called “noiseless” since we assume that the
communication line from Alice to Bob is perfect.

The coin flip example illustrates the traditional core principles of information theory, or Shannon
theory : We are interested in finding optimal asymptotic rates for information processing tasks such
as compression (the task that you have just solved), information transmission over noisy channels,
etc. Quantum information theory has very analogous goals – except that now we are dealing with
quantum information rather than classical information. At a fundamental level, this means that we
are interested in the asymptotic behavior of a large number of independent copies of a quantum
state ρ, i.e., in ρ⊗n for large n (the so-called i.i.d. limit).

Example 5.1 (Warning). If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state then ρ⊗n = ∣ψ⟩⊗n ⟨ψ∣⊗n is an operator on the
symmetric subspace. We explored this quite extensively in lectures 2 to 4. However, as soon as ρ is a
mixed state, ρ⊗n is no longer supported purely on the symmetric subspace. A simple example is the
maximally mixed state τ = 1/d. Clearly, τ⊗n = 1/dn is supported on all of (Cd)⊗n. Thus we need to
develop new techniques.

Remark 5.2. In recent years, there has been an increased interest in understanding optimal in-
formation processing rates in non-asymptotic scenarios. This is largely beyond the scope of these
lectures, although we might have a brief glance at these ideas in the last week of class.

5.2 Spectrum estimation

Today, we will start developing the appropriate machinary for working with independent copies of a
quantum state, ρ⊗n. A popular approach that you will find in many textbooks is to work in the
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eigenbasis of ρ in order to turn the quantum problem into a classical problem (e.g., Nielsen and
Chuang, 2002, Wilde, 2013). In this class we will pursue a different, and arguably more “invariant”
route. What this means exactly will become clear over the coming lectures, but the practical
advantage of exploiting all available symmetries will be that we are naturally led to universal
protocols that work not only for a single state ρ but for whole classes of states (e.g., all states ρ with
the same eigenvalues).

When we discussed the symmetric subspace, our motivation was to solve an estimation problem,
namely, the estimation an unknown pure state ∣ψ⟩ given n copies ∣ψ⟩⊗n. Today, we will again be
interested in an estimation problem: We would like to estimate the eigenvalues of an unknown
density operator ρ, given n copies ρ⊗n. That is, if p1 ≥ ⋅ ⋅ ⋅ ≥ pd denote the eigenvalues of ρ then we
would like to define a measurement {Qp̂} such that, when we measure on ρ⊗n, we obtain an outcome
such that p̂ ≈ p. This task is known as the spectrum estimation problem (Keyl and Werner, 2001). It
is an easier problem than estimating the full density operator ρ, and it allows us to focus on the key
difference between pure and mixed states – their eigenvalue spectrum. We will spend the rest of
today’s lecture and part of lecture 6 solving the spectrum estimation problem.

The tools that we will develop in the course of solving this problem will be prove useful for
working with asymptotic quantum information more generally. In lecture 7, we will use them to
compress quantum information and we will also sketch how one can estimate the entire unknown
quantum state ρ from ρ⊗n, thereby solving the task of quantum states estimation of mixed state,
also known as quantum state tomography.

Symmetries of the spectrum estimation problem

If ρ is a quantum state on Cd then the state ρ⊗n is a quantum state on (Cd)⊗n. As discussed
in section 3.1, this space is a representation for two groups: (i) the permutation group Sn, with
representation operators Rπ, and (ii) the unitary group U(d), with representation operators TU = U⊗n.
The operator ρ⊗n is permutation-invariant as defined last time, i.e., it commutes with permutations,
[Rπ, ρ

⊗n] = 0 for all π ∈ Sn. We may explicitly verify this on a product basis:

Rπρ
⊗n

∣x1, . . . , xn⟩ = Rπ (ρ ∣x1⟩ ⊗ . . .⊗ ρ ∣xn⟩) = ρ ∣xπ−1⟩ ⊗ . . .⊗ ρ ∣xπ−1⟩

= ρ⊗n(∣xπ−1⟩ ⊗ . . .⊗ ∣xπ−1⟩) = ρ
⊗nRπ ∣x1, . . . , xn⟩ .

On the other hand, ρ⊗n does not commute with the action of the unitary group: Instead,

U⊗nρ⊗nU †,⊗n
= (UρU †

)
⊗n

which amounts to replacing ρ ↦ UρU †. This operation changes the eigenbasis, but leaves the
eigenvalues the same. In other words, while the permutation symmetry is a symmetry of the state,
the unitary symmetry is a symmetry of the problem that we are trying to solve! This suggests that
both symmetries should play an important role, and it prompts us to investigate the representation
(Cd)⊗n more closely.

Example 5.3 (Warmup). Suppose we are just given two copies of the unknown quantum state, i.e.,
ρ⊗2. This is a density operator on

(Cd)⊗2
= Sym2

(Cd) ⊕⋀2
(Cd).
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Figure 8: By measuring the swap operator on independent copies of ρ⊗2, we can estimate the purity
trρ2 of the quantum state.

Both the symmetric and the antisymmetric subspace are irreducible representations (you show this
in problem 2.3 for the symmetric subspace; the antisymmetric subspace can be treated completely
analogously). The permutation group S2 has just two elements, the identity permutation and the
nontrivial permutation π = 1↔ 2. The corresponding operator is known as the swap operator

F = Rπ = ∑
a,b

∣a, b⟩ ⟨b, a∣ .

It commutes both with the representation of U(d) as well as the one of S2 (any operator commutes
with itself and with the identity matrix). Thus, F is an observable of exactly the kind that we are
looking for. Its eigenvalues are +1 on the symmetric subspace and −1 on the antisymmetric subspace.
In problem 2.1, you show the following “swap trick”:

⟨F ⟩ = trρ⊗2F = trρ2.

The quantity trρ2 is called the purity of ρ, since it is equal to 1 only if the state ρ is a pure state. (It
is closely related to Rényi-2 entropy S2(ρ) = − log trρ2 that you study in problem 2.1.) The important
point though is that if ρ has eigenvalues r1 ≥ ⋅ ⋅ ⋅ ≥ rd then

trρ2
= ∑

k

r2
k,

and hence already this simple measurement allows us to learn something about the eigenvalues of ρ.
Just to be perfectly clear: When measuring the observable F on ρ⊗2, the measurement outcome is

either ±1. Only when repeated many times on independent copies of ρ⊗2 will these signs average to
trρ2 (fig. 8).

For qubits, d = 2, example 5.3 provides a complete solution (since p1+p2 = 1, there is only a single
unknown, which can be determined from trρ2 = p2

1 + p
2
2). In the following, we will discuss a different

solution which fully exploits the symmetries of the problem and generalizes readily to any d. The
protocol is due to Keyl and Werner (2001) and we will follow the proof strategy of Christandl and
Mitchison (2006). It will prove to be an important building block for several quantum information
applications that we will discuss in the remainder of this course.
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Towards a solution of the spectrum estimation problem

We start by decomposing the Hilbert space of n qubits into irreducible representations of SU(2).
The answer can be written ni the form:

(C2
)
⊗n

≅⊕
j

Vj ⊗Cm(n,j), (5.3)

where Vj denotes the irreducible representation of SU(2) with spin j andm(n, j) are the multiplicities
that we need to determine. That is, for any U ∈ SU(2) we have that

U⊗n
≅⊕

j

T
(j)
U ⊗ 1Cm(n,j) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T
(0)
U ⊗ 1Cm(n,0)

T
(1/2)
U ⊗ 1Cm(n,1/2)

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.4)

Here we write T (j)
U for the representation operators of the spin-j representation.

Recall that we are looking for a measurement that commutes with both the action of SU(2) and
Sn. The projection operator Pj onto a direct summand in eq. (5.3) seems like a plausible candidate.
It measures the total spin – generalizing example 5.3. By design, Pj commutes with the action of
the unitary group. Indeed, in view of eq. (5.4) it clearly commutes with U ∈ SU(2), and any element
of U(2) can be written in the form eiφU where U ∈ SU(2).

Does Pj also commute with the action of Sn? Yes, this follows from [Rπ, U
⊗n] = 0 and Schur’s

lemma, as you will verify in problem 3.5. We have found the desired candidate measurement!

In the remainder of today’s lecture, we will start analyzing the projective measurement {Pj}.
That is, we would like to bound the probabilities

Pr(outcome j) = tr [ρ⊗nPj] . (5.5)

Note that these probabilities remain unchanged if we substitute ρ↦ UρU †, as Pj commutes with
U⊗n. Since we can always diagonalize ρ by a unitary there is thus no harm in assuming that ρ is
already a diagonal matrix

ρ = (
p

1 − p
) (5.6)

with p ≥ 1 − p, i.e., p ∈ [1
2 , 1]. Our goal will be to show that (5.5) is exponentially small in n most of

the time – except when we can obtain a good estimate of the spectrum from j (we will later see that
p̂ ∶= 1

2 +
j
n ≈ p provides such an estimate).

How would we go about analyzing eq. (5.5)? The idea is that ρ⊗n looks just like the representation
operators U⊗n – except that ρ is almost never a unitary matrix! To go beyond unitaries, we need to
talk about some more representation theory.

Representation theory of SU(2) and SL(2)
As we have already used several times in this course, the irreducible representations of SU(2) are
labeled by their spin j ∈ {0, 1

2 ,1,
3
2 , . . .}. We denote the spin-j irrep by Vj and its representation

operators by T (j)
U . The representation Vj is of dimension 2j + 1.
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Remark 5.4. In your quantum mechanics class, you have probably analyzed the representation
theory of SU(2) by considering its “generators”: For any traceless Hermitian matrix H, U = exp(iH)

is in SU(2). Given a representation H̃ of SU(2) with representation operators T̃U , we can define

H̃ =
1

i

d

dt
∣=0
T̃exp(itH).

Sometimes this is called the representation of the Lie algebra of SU(2) (though technically speaking
the Lie algebra of SU(2) consists of the antihermitian traceless matrices). Note that the assignment
H ↦ H̃ is linear. Since the real vector space of traceless Hermitian matrices is spanned by the Pauli
operators X,Y ,Z (the “generators”), we can fully understand the representation H̃ by considering the
operators X̃, Ỹ , Z̃.

In your quantum mechanics class, you likely followed this approach to analyze the irreducible
representations of SU(2). For example, you might remember that Vj has a basis ∣j,m⟩, where
m = −j, . . . , j − 1, j, such that

Z̃ ∣j,m⟩ = 2m ∣j,m⟩ .

Moreover,

Q̃ = (X̃)
2
+ (Ỹ )

2
+ (Z̃)

2
= 4j(j +

1

2
)1Vj .

The operator Q̃ is called the quadratic Casimir operator of SU(2), and we used the fact that it acts
by a scalar on each irreducible representation of SU(2) in lecture 1 to find a qubit .

In the previous lectures, we used to great effect that the symmetric subspace is irreducible –
and you will show this in problem 2.3 by following precisely the strategy outlined in the preceding
remark. This means that Symn(C2) ought to be one of the spin-j irreps. It is very easy to see that
j = n

2 , and we record this important fact:

Vj ≅ Sym2j
(C2

). (5.7)

It gives us a very simple way of realizing the spin-j representation concretely, as will be prove useful
in just a momenet.

An important fact that was perhaps never explicitly spelled out in your quantum mechanics
class is the following: Any unitary representation of SU(2) can be extended to a (holomorphic,
non-unitary) representation of the group SL(2) in a unique way. For example, our representation
TU = U⊗n of SU(2) on (Cd)⊗n can be extended to Tg = g⊗n for g ∈ SL(2). We can also restrict this
action to the symmetric subspace. Since we can define the spin-j representation using the symmetric
subspace (eq. (5.7)), we can likewise define T (j)

g for any g ∈ SL(2). Thus, for any g ∈ SL(2), eq. (5.3)
reads

g⊗n ≅⊕
j

T (j)
g ⊗ 1Cm(n,j) . (5.8)

Remark. A general way of defining the extension from SU(2) to SL(2) is as follows: In remark 5.4,
we defined H̃ for Hermitian matrices we can safely extend it by linearity to arbitrary complex traceless
matrices M . But then exp(M) is an arbitrary matrix in SL(2) and this allows us to extend an
arbitrary unitary representation of SU(2) to SL(2): For g = exp(M), define Rg ∶= exp(M̃). It is
not hard to see that a subspace is invariant for SU(2) iff it is invariant for the operators H̃ iff it
is invariant for the operators M̃ iff it is invariant for SL(2). This can be used to argue that the
finite-dimensional representation theory of SU(2) and of SL(2) is completely identical.
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Bounding the probability distribution

Why is this important? We are interested in understanding the operator ρ⊗n on (C2)⊗n. Suppose
that our density matrix ρ has no zero eigenvalues. Then it is is invertible and

ρ̃ ∶= ρ/
√

detρ

is an element in the group SL(2), and we can interpret ρ̃⊗n as the corresponding representation
operator on (C2)⊗n! By eq. (5.8), it follows that

ρ⊗n = (detρ)n/2 ρ̃⊗n ≅ (detρ)n/2⊕
j

T
(j)
ρ̃ ⊗ 1Cm(n,j) =⊕

j

(detρ)n/2 T (j)
ρ̃

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶T (n,j)ρ

⊗1Cm(n,j) (5.9)

By continuity, this equation can be extended to all ρ ≥ 0.

Remark. Since any operator X can be infinitesimally perturbed to become invertible, we can use the
same strategy to analyze X⊗n for arbitrary operators X on C2.

As a consequence of eq. (5.9), our desired probability (5.5) reads

tr [Pjρ
⊗n] = tr [T (n,j)

ρ ⊗ 1Cm(n,j)] = (detρ)n/2 tr [T
(j)
ρ̃ ⊗ 1Cm(n,j)] =m(n, j)(detρ)n/2 tr [T

(j)
ρ̃ ] .

How can we compute the right-hand side trace? By eq. (5.7) we can simply compute the trace of
ρ̃⊗2j on the symmetric subspace:

tr [T
(j)
ρ̃ ] =

2j

∑
k=0

⟪k∥ρ̃⊗2j
∥k⟫ = (detρ)−j

2j

∑
k=0

⟪k∥ρ⊗2j
∥k⟫ = (detρ)−j

2j

∑
k=0

pk(1 − p)2j−k
≤ (detρ)−j(2j + 1)p2j .

Here, we compute the trace in the occupation number basis

∥k⟫ ∝ ∣0⟩⊗k ∣1⟩⊗(2j−k)
+ permutations

of the symmetric subspace (see eq. (2.5) and problem 2.3). In the third step, we used that ρ is
diagonal, and in the last step we bounded each summand by p2j using that p ≥ 1 − p (see eq. (5.6)).
Thus:

tr [T (n,j)
ρ ] = (detρ)n/2 tr [T

(j)
ρ̃ ] ≤ (2j + 1)(detρ)n/2−jp2j

= (2j + 1)p
n
2
+j

(1 − p)
n
2
−j

= (2j + 1)2n
[( 1

2
+ j
n
) log p+( 1

2
− j
n
) log(1−p)]

= (2j + 1)2n
[p̂ log p+(1−p̂) log(1−p)].

(5.10)

where we have defined p̂ ∶= 1
2 +

j
n . If we plug this back into the preceding equation then we obtain

tr [Pjρ
⊗n] ≤ (2j + 1)m(n, j)2n

[p̂ log p+(1−p̂) log(1−p)].

This already looks quite suggestively as if the eigenvalue p has something to do with p̂!
However, we still need to determine the multiplicities m(n, j). We will do this next time – it will

allow us to solve the spectrum estimation problem completely. We will then put the tools developed
into a more general context and use them to tackle a number of important applications.
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Solution of the spectrum estimation problem
Lecture 6 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

6.1 Solution of the spectrum estimation problem

Last time we started discussing the spectrum estimation problem for qubits. Given ρ⊗n, where ρ had
eigenvalues p ≥ 1 − p, we wanted to design a measurement that tells us information about p ∈ [1

2 ,1].
For this, we considered the decomposition of (C2)⊗n into irreducible representations for SU(2):

(C2
)
⊗n

≅⊕
j

Vj ⊗Cm(n,j) (6.1)

and defined Pj as the projector on the spin-j summand. We were led to these projectors because
we were looking for a measurement that respected all the symmetries: the unitary invariance of
the spectrum of ρ as well the permutation invariance of ρ⊗n. In fact, Pj is the most fine-grained
measurement that commutes with U⊗n and with Rπ (problem 3.5). Hoping that {Pj} might prove
to be a good measurement for solving the spectrum estimation problem, we started to calculate the
probability

Pr(outcome j) = tr [Pjρ
⊗n] =? (6.2)

We will now finish this calculation. Our goal will be to show that this probability is exponentially
small in n, unless

p̂ ∶=
1

2
+
j

n
≈ p.

Thus we will find that the measurement outcome j will lead to a good estimate p̂ ≈ p with very high
probability.

The key idea to calculating (6.2) was to extend both (C2)⊗n as well as the spin-j representations
Vj from SU(2) to SL(2) (see eq. (5.8)). Using that ρ/

√
detρ is an element in SL(2), we found that

ρ⊗n ≅ (detρ)n/2⊕
j

T
(j)
ρ/

√
detρ

⊗ 1Cm(n,j) =⊕
j

(detρ)n/2 T (j)
ρ/

√
detρ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶T (n,j)ρ

⊗1Cm(n,j) (6.3)

(eq. (5.9)) for arbitrary density operators ρ. It followed that:

tr [Pjρ
⊗n] =m(n, j) tr [T (n,j)

ρ ] . (6.4)

Last time, we calculated the right-hand side trace but not the multiplicities m(n, j). For this, we
will recall one last fact that you learned in your quantum mechanics class when studying the total
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Figure 9: By iterating the Clebsch-Gordan decomposition for V1/2 ⊗ V1/2 ⊗ . . . , we obtain a decom-
position of (C2)⊗n into irreducible representations of SU(2).

angular momentum. Given two irreducible representations Vj1 and Vj2 , we can consider their tensor
product Vj1 ⊗ Vj2 . This is a representation of SU(2), with U acting by T (j1)

U ⊗ T
(j2)
U . In general

this representation is not irreducible and so it can be decomposed it into irreducibles. The famous
Clebsch-Gordan rule tells us what that this decomposition look as follows:

Vj1 ⊗ Vj2 ≅ Vj1+j2 ⊕ Vj1+j2−1 ⊕ . . .⊕ V∣j1−j2∣

In particular, for j2 = 1
2 , we have

Vj ⊗ V1/2 =
⎧⎪⎪
⎨
⎪⎪⎩

Vj+1/2 ⊕ Vj−1/2 if j > 0

V1/2 if j = 0
. (6.5)

Since a single qubit is nothing but a spin-1/2 representation, this allows us to decompose (C2)⊗n

by successively applying the Clebsch-Gordan rule (6.5):

(C2
)
⊗1

≅ V1/2

(C2
)
⊗2

≅ V1/2 ⊗ V1/2 = V1 ⊕ V0

(C2
)
⊗3

≅ (V1 ⊕ V0) ⊗ V1/2 = V3/2 ⊕ (V1/2 ⊕ V1/2) ⊕ V0

⋮

This process is visualized in fig. 9 and the general result is as follows: The multiplicity m(n, j) of Vj
in (C2)⊗n is precisely equal to the number of paths from (0,0) to (n, j) in fig. 9.

How can we estimate the number of paths? Any path can be specified by a number of n “ups”
and “downs”. The number of “ups” u must satisfy (u − (n − u))/2 = u − n/2 = j in order to end up at
(n, j). Thus there are at most (

n
n
2
+j) such paths. (This is only an upper bound because paths that

go below zero are invalid.) As a consequence of eq. (5.1), this means that

m(n, j) ≤ (
n

n
2 + j

) ≤ 2nh(p̂), (6.6)

where we recall the binary Shannon entropy

h(p̂) = −p̂ log p̂ − (1 − p̂) log(1 − p̂)
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from the compression of coin flips in section 5.1. Thus the multiplicites m(n, j) grow at most
exponentially, with exponent is given by precisely by the binary entropy. Note that, as a consequence

rkPj = (dimVj)m(n, j) ≤ (2j + 1)2nh(p̂) ≤ (n + 1)2nh(p̂). (6.7)

This fact will prove important later for information theoretic applications.

Remark. More generally, given two representations H and H′ of some group G, we can always
consider their tensor product H⊗H′ as a representation of the group G, with representation operators
Tg ⊗ Tg′. Note that this is precisely the same notation as used in eq. (6.1) if we think of Cm(n,j) as
an m(n, j)-dimensional trivial representation of SU(2).

The other ingredient in eq. (6.4) is the trace of the operator T (n,j)
ρ . Last time, we computed the

following upper bound (eq. (5.10)):

tr [T (n,j)
ρ ] ≤ (2j + 1)p

n
2
+j

(1 − p)
n
2
−j

We can rewrite this as follows,

tr [T (n,j)
ρ ] ≤ (2j + 1)2n

[p̂ log p+(1−p̂) log(1−p)]
≤ (2j + 1)2

−n[p̂ log 1
p
+(1−p̂) log 1

1−p]

= (2j + 1)2
−n[−p̂ log p̂−(1−p̂) log(1−p̂)+p̂ log p̂

p
+(1−p̂) log 1−p̂

1−p]

≤ (2j + 1)2−n[h(p̂)+δ(p̂∥p)], (6.8)

where we have introduced the binary relative entropy

δ(p̂∥p) = p̂ log
p̂

p
+ (1 − p̂) log

1 − p̂

1 − p
.

Remark. The relative entropy is an important quantity in information theory and statistics. Note
that it is not symmetric under exchanging p↔ p̂.

What is the purpose of this rewriting? If we plug eqs. (6.6) and (6.8) into eq. (6.4) we obtain the
following result:

Pr(outcome j) = tr [Pjρ
⊗n] ≤ (2j + 1)2−nδ(p̂∥p) (6.9)

The point now is that the relative entropy is a distance measure between probability distributions:
It is nonnegative and δ(p̂∥p) = 0 if and only if p = p̂. More quantitatively, it satisfies the following
inequality, a special case of the so-called Pinsker’s inequality (problem 3.4):

δ(p̂∥p) ≥
2

ln 2
(p̂ − p)2 (6.10)

Thus, unless p̂ ≈, the probability in eq. (6.9) is exponentially small. This at last allows us to solve
the spectrum estimation problem for qubits:

Given ρ⊗n, perform a total spin measurement in the state ρ⊗n using the projective measurement
{Pj}. Upon outcome j, estimate that the maximal eigenvalue of the state ρ is p̂ = 1

2 +
j
n . Then,

Pr(∣p̂ − p∣ > ε) = ∑
j s.th. ∣p̂−p∣>ε

tr [Pjρ
⊗n] ≤ (n + 1)22−

2
ln2

nε2 , (6.11)
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where we have used that eqs. (6.9) and (6.10), that 2j + 1 ≤ n + 1, and that the sum runs certainly
over no more than n + 1 values of j. This means that p̂ ≈ p with very high probability.

In lecture 10, we will discuss how to implement the spectrum estimation measurement concretely
by a quantum circuit. Spectrum estimation has been realized experimentally in Beverland et al.
(2016).

6.2 Towards quantum data compression

There is another interpretation of what we have just achieved. For fixed ε > 0, consider the projection
operator

P̃n = ∑
j s.th. ∣p̂−p∣<ε

Pj

on all sectors j in eq. (6.1) for which ∣p̂ − p∣ < ε. Equation (6.11) asserts precisely that

tr [P̃nρ
⊗n] → 1 (6.12)

as n→∞, which in turn implies that

P̃nρ
⊗nP̃n ≈ ρ

⊗n.

This means that if we perform a measurement {P̃n,1−P̃n} on ρ⊗n then, for large n, this measurement
will proceed with very high probability and leave the state ρ⊗n almost unchanged. We will call the
subspace H̃n that P̃n projects on a typical subspace for ρ⊗n (although we caution that the traditional
definition is somewhat different).

Since the binary entropy is continuous,

∣p̂ − p∣ < ε⇒ ∣h(p̂) − h(p)∣ < δ(ε)

for some function δ such that δ(ε) → 0 as ε → 0. (To obtain a more quantitive bound, you could
use Fannes’ inequality that your derive in problem 3.4.) In view of eq. (6.7), this implies that the
subspace that P̃n projects on has dimension no larger than

dim H̃n ≤ (n + 1)22n(h(p)+δ(ε)). (6.13)

Thus, the post-measurement state is supported on a possibly much smaller subspace of roughly
n(h(p) + δ) qubits.

Let us end with a word of caution: In the coin flip example in section 5.1, the purpose of the
compression scheme was to communicate Alice’ actual sequence of coin flips to Bob – not for Bob to
flip its own biased coin. The latter would only reproduce the probability distribution of the biased
coin, but not the actual sequence of coin flips observed by Alice! In the same way, the purpose of a
quantum compression scheme is not simply to produce the quantum state ρ⊗n at Bob’s side.

In fact, compression protocols are usually designed for known information sources. In the coin
flip example, this means that Bob already knows the parameter p of the coin and could flip his own
biased coin with no communication required at all. (Since its quantum analogue is the eigenvalue
spectrum of ρ, you might in fact be concerned that spectrum estimation solves a problem that is
completely irrelevant to compression.)

Next time, we will carefully define what it means to compress quantum information and see that
the properties in eqs. (6.12) and (6.13) above are nevertheless precisely the properties required to
solve the problem.
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Schur-Weyl duality, quantum data compression, tomography
Lecture 7 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Today, we will summarize the “Schur-Weyl toolbox” that we developed in lecture 6 to solve
the spectrum estimation problem. We will then apply it to the task of compressing a quantum
information source.

7.1 The Schur-Weyl toolbox

Let us recapitulate the machinary that we developed to solve the spectrum estimation problem. Just
like any representation of SU(2), the Hilbert space of n qubits can be decomposed in the form

(C2
)
⊗n

≅⊕
j

Vj ⊗Cm(n,j).

Last time, we discussed that the action of SU(2) could be extended first to SL(2) and then to
arbitrary operators on C2: In eq. (6.3), we found that

X⊗n
≅⊕

j

T
(n,j)
X ⊗ 1Cm(n,j) ,

where
T

(n,j)
X = (detX)

n/2 T (j)
X/

√
detX

is a polynomial in the matrix elements of X and hence makes sense for arbitrary X. You can verify
this, e.g., by using the symmetric subspace model of the spin-j representation. In particular, this
formula applies to unitary matrices U . It follows that the operators T (n,j)

U define a representation of
the unitary group U(2), which we will denote by Vn,j . Here, j tells us the spin of the representation
when restricted to matrices in SU(2), and n reminds us of the way that multiples α1C2 of the
identity matrix act by αn. Since every unitary can be written as αU with α ≠ 0 and U ∈ SU(2),
this information specifies the representation completely. It is clear that the representations Vn,j are
irreducible, since they are even irreducible for the subgroup SU(2).

We can also consider (C2)⊗n as a representation of the symmetric group Sn. Since [Rπ, U
⊗n] = 0,

Schur’s lemma (lemma 3.2) implies that

Rπ ≅⊕
j

1Vn,j ⊗R
(n,j)
π

for some operators R(n,j)
π on Cm(n,j). So far, the Hilbert spaces Cm(n,j) were simply vectors spaces –

but now we see that the operators R(n,j)
π turn them into representations of Sn. We will denote these
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representations by Wn,j . The representations Wn,j are irreducible and pairwise inequivalent. You
will verify this and the following statements in problem 3.5.

Thus, we have the following decomposition of the Hilbert space of n qubits:

(C2
)
⊗n

≅⊕Vn,j ⊗Wn,j (7.1)

which holds as a representation of both U(2) and Sn (equivalently, of the product group U(2) × Sn).
The spaces {Vn,j} and {Wn,j} are pairwise inequivalent, irreducible representations of U(2) and of
Sn, respectively. Equation (7.1) shows that they are “paired up” perfectly in the n-qubit Hilbert
space. This result is known as Schur-Weyl duality, and it has a number of important consequences.

For example, any operator that commutes with all U⊗n is necessarily a linear combination of the
operators Rπ. Dually, any operator that commutes with all Rπ is necessarily a linear combination of
operators of the form X⊗n (even U⊗n). Mathematically, we say that the two representations span
each other’s commutants. Schur-Weyl duality also implies that the projectors

Pj ≅⊕
j′
δj,j′1

not only have both symmetries of the spectrum estimation problem (i.e., that they commute with
both the U⊗n and the Rπ), but that they are in fact the most fine-grained projective measurement
with this property.

Table 1 assembles all important facts and formulas about the representation theory of the n-qubit
Hilbert space that we obtained past week (the “Schur-Weyl toolbox”). It contains one formula,
eq. (7.5), which is proved just like eq. (6.8). We will use it to solve the quantum state tomography
problem in section 7.3 below.

Remark 7.1. So far, we have simply argued on abstract grounds that the Hilbert space of n qubits can
be decomposed in the form (7.1). Here, the notation ≅ means that there exists a unitary intertwiner
from the left-hand side to the right-hand side. But if we want to implement, e.g., spectrum estimation
in practice, we need to know what this unitary operator looks like. In other words, we need to find a
unitary operator that implements the transformation from the product basis

∣x1, . . . , xn⟩ = ∣x1⟩ ⊗ . . .⊗ ∣xn⟩

to the Schur-Weyl basis
∣j,m, k⟩

where j ∈ {. . . , n2 − 1, n2 }, m ∈ {−j, . . . , j}, k ∈ {1, . . . ,m(n, j)}. Note that the right-hand side is not a
tensor product of three spaces, because the allowed values for m and k depend on j. However, we can
embed it into a larger space where ∣j,m, k⟩ = ∣j⟩ ⊗ ∣m⟩ ⊗ ∣k⟩ is a product basis vector. In lecture 10
we will learn how to implement this transformation – called the quantum Schur transform – by a
quantum circuit.

Beyond qubits

How does the preceding generalize beyond qubits? This is best explained by making a simple
coordinate change and instead of by (n, j) parametrizing all representations by

λ = (λ1, λ2) = (
n

2
+ j,

n

2
− j) ∈ Z2.
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We can identify λ with a so-called Young diagram with two rows, where we place λ1 boxes in the
first and λ2 boxes in the second row. E.g.,

λ = (7,3) =

We always demand that λ1 ≥ λ2, corresponding to j ≥ 0. Note that the total number of boxes is
λ1 + λ2 = n, while 2j = λ1 − λ2 is the difference of row lengths.

If we write Vλ ∶= Vn,j and Wλ ∶=Wn,j , then the Schur-Weyl duality (7.1) becomes

(C2
)
⊗n

≅⊕
λ

Vλ ⊗Wλ, (7.2)

where we sum over all Young diagrams with n boxes and at most two rows.

Remark 7.2. In example 3.1, we already met the irreducible representations of S3 and labeled them
by Young diagrams. The representations W and W that occur in (C2)⊗3 are precisely the

ones that we already met in example 3.1. You will verify this in problem 4.1.
On the other hand, because the antisymmetric subspace ⋀3 C2 = {0} is zero-dimensional, the sign

representation W does not appear at all.

The notation λ is quite suggestive. Indeed, let us define the normalization of a Young diagram λ
by λ̄ = λ/n = (λ1/n,λ2/n), where n = λ1 + λ2. This is a probability distribution, and

λ̄1 =
1

2
+
j

n
= p̂, λ̄2 =

1

2
−
j

n
= 1 − p̂.

Thus, spectrum estimation can be rephrased as follows: When we measure {Pλ} on ρ⊗n and the
outcome is λ, then λ̄ is a good estimate for the spectrum of ρ.

The key point now is the following: eq. (7.2) generalizes quite directly from qubits to arbitrary
d. This is because the irreducible representations of U(d) are labeled by Young diagrams with (at
most) d rows, while the irreps of Sn are labeled by Young diagrams with n boxes. See, e.g., Harrow
(2005), Christandl (2006), Walter (2014) for further detail.

7.2 Quantum data compression

We will now discuss quantum data compression in more precise terms (Schumacher, 1995). We
consider a quantum information source described by an ensemble {px, ∣ψx⟩} of qubit pure states. It
emits sequences

∣ψ(x⃗)⟩ = ∣ψx1⟩ ⊗ . . .⊗ ∣ψxn⟩ ∈ (C2
)
⊗n

with probabilities
p(x⃗) = px1 . . . pxn .

The task of quantum data compression is to design an compressor that encodes a sequence
∣ψ(x⃗)⟩ ∈ (C2)⊗n into some state of Rn qubits and a corresponding decompressor – R is called the
compression rate at block length n. Unlike the state of a coin, we cannot in general hope to precisely
recover the original state. Instead, the decompressor should produce a state ∣ψ̃(x⃗)⟩ that has high
overlap with the original state (say, on average):

∑
x⃗

p(x⃗)E [∣⟨ψ(x⃗)∣ψ̃(x⃗)⟩∣2] ≈ 1. (7.6)
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Schur-Weyl duality:

(C2
)
⊗n

≅ ⊕
j=...,n

2
−1,n

2

Vn,j ⊗Wn,j ,

X⊗n
≅⊕

j

T
(n,j)
X ⊗ 1Wn,j , where T

(n,j)
X ∶= (detX)

n/2 T (j)
X/

√
detX

,

Rπ ≅⊕
j

1Vn,j ⊗R
(n,j)
π .

Vn,j and Wn,j are pairwise inequivalent, irreducible representations of U(2) and Sn, respectively.

Dimensions:

dimVn,j = 2j + 1 ≤ n + 1,

dimWn,j =m(n, j) ≤ 2nh(p̂), where p̂ =
1

2
+
j

n
. (7.3)

Estimates:

2−n[h(p̂)+δ(p̂∥p)] ≤ tr [T (n,j)
ρ ] ≤ (2j+1)2−n[h(p̂)+δ(p̂∥p)] where ρ has eigenvalues {p,1 − p}, (7.4)

More generally, if X ≥ 0 and k > 0:

tr [T
(n,j)
Xk ] ≤ (2j + 1)2−nk[h(p̂)+δ(p̂∥x)] (trX)

kn , where
X

trX
has eigenvalues {x,1 − x}. (7.5)

Spectrum estimation:

Pj ≅⊕
j′
δj,j′1Vn,j ⊗ 1Wn,j ,

ρ⊗n ≅⊕
j

T (n,j)
ρ ⊗ 1Vn,j =∶ ⊕

j

pj ρVn,j ⊗ τWn,j ,

and so

pj = tr [Pjρ
⊗n] ≤ (n + 1)22−nδ(p̂∥p) ≤ (n + 1)22−n

2
ln2

(p̂−p)2

tr [P̃nρ
⊗n] ≥ 1 − (n + 1)22−n

2
ln2

ε2

where P̃n ∶= ∑j∶∣p̂−p∣<ε Pj is the projector onto the “ε-spectrum typical subspace” of ρ.

Table 1: The Schur-Weyl toolbox for i.i.d. quantum information theory (in the case of qubits).
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Figure 10: Illustration of the compression of a quantum information source.

The average value E[. . . ] refers to the fact that the decompressed state ∣ψ̃(x⃗)⟩ for a given ∣ψ(x⃗)⟩ is
typically random. How should we go about solving this problem?

At the end of last lecture, we constructed, for every p ∈ [1
2 , 1] and ε > 0, projectors P̃n = ∑j∶∣p−p̂∣<ε Pj

onto a subspace H̃n of (C2)⊗n such that

dim H̃n ≤ (n + 1)22nh(p)+δ(ε),

and
tr [P̃nρ

⊗n] → 1 (7.7)

for all density operators ρ with eigenvalues {p,1 − p} (cf. table 1).
What is the density operator ρ that we should care about? Every ensemble gives rise to a density

operator ρ = ∑x px ∣ψx⟩ ⟨ψx∣, describing the average state emitted by the qubit source (we discussed
this in lecture 3).

Remark. The states ∣ψx⟩ emitted by the source do not have to be orthogonal. Thus, the eigenvalues
{p, 1−p} of ρ used to construct P̃n are not in general the same as the probabilities px of the ensemble.
E.g., in problem 1.3 you computed that 1

2 (∣1⟩ ⟨1∣ + ∣−⟩ ⟨−∣) has eigenvalues 1
2 ±

1
2
√

2
.

This suggests the following two-step quantum data compression protocol that is completely
analogous to the way by which we compressed sequences of coin flips in section 5.1:

• Alice measures the observable P̃n (i.e., she performs the projective measurement {P̃n,1 − P̃n}).

• If the outcome is 1, then the post-measurement state

P̃n ∣ψ(x⃗)⟩

∥P̃n ∣ψ(x⃗)⟩∥
∈ H̃n

lives in the subspace H̃ only. Thus, Alice can send this state over to Bob by transmitting
roughly n(h(p) + δ) qubits.

• If the outcome is 0, she simply sends over some fixed state. (Alternatively, she might signal
failure – as in our coin flip protocol.)

Bob then uses the sent-over state in H̃ ⊆ (C2)⊗n as the decompressed state. For large n, this protocol
achieves a quantum compression rate of roughly R = h(p) + δ.

Remark. As discussed in class, in order to be able to “send over” the post-measurement state
we first need to identify the subspace H̃ with N ≈ n(h(p) + δ) many qubits. For example, Alice
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could first apply a unitary U that maps the subspace H̃ into the subspace of states of the form
∣φ⟩A1...AN

⊗ ∣0⟩AN+1 ⊗ . . . ⊗ ∣0⟩An. Alice would then send over the first N of her qubits. Upon
receiving those, Bob would apply U † to obtain the decompressed sate. Mathematically, this is not
very interesting, but physically this is quite important because we usually do not get to choose our
physical qubits!

Let us analyze the average fidelity (7.6) achieved by our compression protocol. If the input state
is ∣ψ(x⃗)⟩ then according to the Born rule the measurement of the observable P̃n yields outcome 1
with probability

q(x⃗) ∶= ⟨ψ(x⃗)∣P̃n∣ψ(x⃗)⟩ .

As already mentioned above, the post-measurement state in this case is

P̃n ∣ψ(x⃗)⟩

∥P̃n ∣ψ(x⃗)⟩∥
=
P̃n ∣ψ(x⃗)⟩
√
q(x⃗)

and so this is the state ∣ψ̃(x⃗)⟩ that Bob obtains at his end. Thus, eq. (7.6) can be bounded as follows:

∑
x⃗

p(x⃗)E [∣⟨ψ(x⃗)∣ψ̃(x⃗)⟩∣2] ≥ ∑
x⃗

p(x⃗) q(x⃗) ∣⟨ψ(x⃗)∣
P̃n ∣ψ(x⃗)⟩
√
q(x⃗)

⟩∣
2
= ∑

x⃗

p(x⃗) ∣⟨ψ(x⃗)∣P̃n∣ψ(x⃗)⟩∣
2

= ∑
x⃗

p(x⃗) q(x⃗)2
≥ (∑

x⃗

p(x⃗) q(x⃗))

2

The first inequality is because we lower bound the overlap in the case that the outcome is 0; the
second inequality is Jensen’s inequality that we already used previously in class. But now note that

∑
x⃗

p(x⃗) q(x⃗) = ∑
x⃗

p(x⃗) tr [∣ψ(x⃗)⟩ ⟨ψ(x⃗)∣ P̃n] = tr [(∑
x⃗

p(x⃗) ∣ψ(x⃗)⟩ ⟨ψ(x⃗)∣) P̃n] = trρ⊗nP̃n → 1

by eq. (7.7). Thus, our compression protocol will successfully compress a quantum information
source with associated density operator ρ at rate h(p) + δ. We can make δ > 0 arbitrarily small by
choosing ε > 0 smaller and smaller (note, however, that this requires the block length n to increase).
This compression rate turns out to be optimal, as we will find in lecture 9.

This motivates us to define the von Neumann entropy of a density operator ρ as

S(ρ) = − trρ log ρ.

For qubits, S(ρ) = h(p), as you can verify by expanding the trace in the eigenbasis of ρ. Thus, the
von Neumann entropy that you might already know from your quantum physics research has a well-
defined operational interpretation: It is the optimal compression rate of any quantum information
source with associated density operator ρ. This is in complete analogy to one of the many roles
played by the Shannon entropy in classical information theory. Next time, we will discuss a number
of other meanings of the von Neumann entropy related to entanglement.

Remark. This emphasizes a fundamental idea in information theory: We often seek to find charac-
terizations of entropic quantities as optimal rates for information processing tasks. In the asymptotic
limit of n → ∞, the von Neumann entropy plays a rather universal role. However, at finite block
lengths n < ∞, there is not just one entropy but a whole zoo of entropic quantities that information
theorists are interested in, each targeted at different tasks (Faist, 2013).
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An interesting fact about our compression protocol is that the projectors P̃n depended only on
the eigenvalues p and 1 − p, not on the eigenbasis of the density operator ρ. Thus the compression
protocol designed above works for all qubit sources whose associated density operator has eigenvalues
{p,1 − p}. On problem 3.3 you will show that by a very simple extension of this idea one obtains
a truely universal quantum compression protocol : It is targeted at a fixed compression rate S0 and
is able to compress an arbitrary qubit source whose density operator has entropy S(ρ) < S0. This
universality is not automatic using the textbook approach to asymptotic quantum information
theory, and it is one of the main advantages of the Schur-Weyl toolbox introduced in section 7.1.

7.3 Supplement: Quantum state tomography

Starting with our solution to the spectrum estimation problem, we can also solve the problem of
estimating an unknown quantum state from many copies – a task that is also known as quantum
state tomography. That is, given ρ⊗n, we would like to design a POVM measurement that yields an
estimate ρ̂ ≈ ρ with high probability,

ρ⊗n Ð→ ρ̂ ≈ ρ.

We follow the approach of Haah et al. (2015) (but see the original paper by Keyl (2006) and other
exciting recent works by O’Donnell and Wright (2015, 2016)).

The POVM measurement

The general idea is that we would like to design a POVM measurement {Qj,U} with two outcomes j
and U , such that the estimate is

ρ̂ = U (
p̂

1 − p̂
)U †.

As before, j is a discrete parameter that we will use for the eigenvalue estimate p̂ = 1
2 +

j
n , while U is

a continuous parameter that rotates the diagonal matrix with eigenvalues {p̂,1 − p̂} into the proper
eigenbasis. In order for {Qj,U} to be a POVM, we need that Qj,U ≥ 0 as well as

∑
j
∫ dU Qj,U = 1, (7.8)

where ∫ dU denotes the Haar measure of the unitary group U(2). This is the unique probability
measure on U(2) such that all expectation values are invariant under the substitution U ↦ V UW †

for unitaries V , W . Moreover, we would like for the POVM {Qj,U{ to be a refinement of {Pj}, so
that the j have the same meaning as before. That is, if we forget about the outcome U then we
would like to get the same statistics for j as if we performed the measurement {Pj}. Mathematically,
this means that we would like to demand that

∫ dU Qj,U = Pj (7.9)

which clearly implies eq. (7.8). What does such a POVM look like?
We will make the ansatz

Qj,U ∝ Pj ρ̂
⊗nPj = PjU

⊗n
(
p̂

1 − p̂
)

⊗n
U †,⊗nPj ≅ T

(n,j)
ρ̂ ⊗ 1Wn,j .
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To see that this is natural, we observe that, for j = n
2 , Pj is the projector Πn onto the symmetric

subspace Symn(C2). Moreover, p̂ = 1, hence

ρ̂ = U ∣0⟩ ⟨0∣U †
=∶ ∣ψ̂⟩ ⟨ψ̂∣ ,

and so
Qn/2,U ∝ Πnρ̂

⊗nΠn = ∣ψ̂⟩
⊗n

⟨ψ̂∣
⊗n

is exactly the uniform POVM (2.8) that we used for pure state estimation in lecture 2. Thus, our
POVM measurement Qj,U is a true generalization of what we did for pure states – that’s already an
encouraging sign. Moreover, note that Qj,U has permutation symmetry (i.e., [Rπ,Qj,U ] = 0) and it
is covariant with respect to the unitary group in the following sense: For all V ∈ U(2),

tr [ρQj,U ] = tr [V ρV †Qj,V U ] ,

where we note that estimate corresponding to the POVM element Qj,V U is V ρ̂V †. We could
summarize this as ρ↦ V ρV † ↝ ρ̂↦ V ρ̂V †.

We will now show that eq. (7.9) holds true by a suitable choice of normalization constant. For
this, we first note that

∫ dU Qj,U ≅ ∫ dU T
(n,j)
ρ̂

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∝1Vn,j

⊗1Wn,j ∝ Pj

as a consequence of Schur’s lemma. Indeed, the indicated operator is a self-intertwiner on the
irreducible representation Vn,j , because

T
(n,j)
V (∫ dU T

(n,j)
ρ̂ )T

(n,j)
V † = T

(n,j)
V

⎛

⎝
∫ dU T

(n,j)
U T

(n,j)
( p̂

1−p̂)
T

(n,j)
U†

⎞

⎠
T

(n,j)
V †

= ∫ dU T
(n,j)
V U T

(n,j)
( p̂

1−p̂)
T

(n,j)
(V U)† = ∫ dU T

(n,j)
U T

(n,j)
( p̂

1−p̂)
T

(n,j)
U† = ∫ dU T

(n,j)
ρ̂ ;

in the second to last step we used that the integral is invariant under the substitution U ↦ V U . It
is now easy to figure out the correct normalization constant – we merely need to compare traces. On
the one hand, in view of the definition of Qj,U , its trace that does not depend on U , and so

tr [∫ dU Qj,U] = trQj,U = tr [T
(n,j)
ρ̂ ] (dimWn,j)

for any U that we like. On the other hand,

trPj = (dimVn,j)(dimWn,j) = (2j + 1)(dimWn,j).

Thus, the appropriately normalized POVM elements are

Qj,U =
2j + 1

tr [T
(n,j)
ρ̂ ]

Pj ρ̂
⊗nPj .
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The fidelity between two quantum states

In section 4.3 we discussed the trace distance T (ρ, σ) as a distance measure between quantum states
(whether pure or mixed). Another very useful measure was the overlap, ∣⟨φ∣ψ⟩∣, which we only
defined for pure states. The overlap also generalizes nicely to mixed states, but the expression is
more complicated: It is the following quantity, known as the fidelity :

F (ρ, σ) = tr
√√

ρσ
√
ρ = tr

√
√
σρ

√
σ

As in problem 1.4,
√
M denotes the square root of a positive semidefinite operator M , defined by

taking the square root of all eigenvalues. The fidelity might seem like a strange definition – but
actually it is precisely the maximal overlap that can be obtained between any two purifications.
That is,

F (ρ, σ) = max
∣φ⟩AB ,∣ψ⟩AB

∣⟨φAB ∣ψAB⟩∣

where we optimize over all pure states ∣φ⟩AB , ∣ψ⟩AB such that trB [∣φ⟩ ⟨φ∣AB] = ρ, trB [∣ψ⟩ ⟨ψ∣AB] = σ.
In particular, if ρ = ∣φ⟩ ⟨φ∣ and σ = ∣ψ⟩ ⟨ψ∣ are themselves pure then the fidelity agrees with the overlap.
(You can also check this explicitly from the definition, since in that case √

ρ = ρ and
√
σ = σ.) In

general, the trace distance and fidelity are related by the Fuchs-van de Graaf inequalities:

1 − F (ρ, σ) ≤ T (ρ, σ) ≤
√

1 − F 2(ρ, σ) (7.10)

Analysis of the measurement

Similarly as when analyzing the spectrum estimation measurement, our goal is to show that
tr [Qj,Uρ

⊗n] is exponentially small unless ρ ≈ ρ̂. Thus, we want to bound For this, we will use the
full strength of the Schur-Weyl toolbox. We start with

tr [Qj,Uρ
⊗n] =

2j + 1

tr [T
(n,j)
ρ̂ ]

tr [Pj ρ̂
⊗nPjρ

⊗n] =
2j + 1

tr [T
(n,j)
ρ̂ ]

tr [T
(n,j)
ρ̂ T (n,j)

ρ ⊗ 1Wn,j]

=
(2j + 1)m(n, j)

tr [T
(n,j)
ρ̂ ]

tr [T
(n,j)√
ρρ̂

√
ρ
] =

(2j + 1)m(n, j)

tr [T
(n,j)
ρ̂ ]

tr [T
(n,j)
√√

ρρ̂
√
ρ
2] .

In the second to last step, we have used that T (n,j)
X T

(n,j)
Y = T

(n,j)
XY for arbitrary operators, as well as

cyclicity of the trace. We now use the upper bound (7.3), the lower bound in (7.4) (observing that ρ̂
has eigenvalues {p̂,1 − p̂}), and the upper bound (7.5) (with k = 2). The result is that

tr [Qj,Uρ
⊗n] ≤

(2j + 1)2nh(p̂)

2−nh(p̂)
(2j + 1)2−2n(h(p̂)+δ(p̂∥x))

(tr
√√

ρρ̂
√
ρ)

2n
≤ (n + 1)2F (ρ, ρ̂)2n,

where in the second step we used δ(p̂∥x) ≥ 0 as well as 2j ≤ n. This is the desired upper bound.
Indeed, it implies that

Pr(T (ρ̂, ρ) ≥ ε) ≤ Pr(F (ρ̂, ρ)2
≤ 1 − ε2

) ≤ ∑
j
∫ dU(n + 1)2

(1 − ε2
)
n

≤ (n + 1)32n log(1−ε2)
≤ (n + 1)32−nε

2

(The first inequality is a consequence of the upper bound in eq. (7.10). The last holds whenever
ε ≤ 1

2 and is only for illustration.)
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Compression and entanglement, entanglement transformations
Lecture 8 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Today we will discuss some entanglement theory of bipartite pure states (i.e., pure states ∣ψ⟩AB
with two subsystems). First, we will solve the problem of compressing subsystems of entangled states.
Then we study transformations between pure states in order to compare them in their entanglement.

8.1 Compression and entanglement

Density operator do not only arise when describing statistical ensembles, but also when describing
subsystems of entangled states. This suggests a second kind of quantum compression task (Schu-
macher, 1995): Given many copies of a bipartite pure state, ∣ψ⟩⊗nAB, we would like to send over the
B-systems to Bob by first compressing the B-systems, sending over a minimal number of qubits,
and decompressing at Bob’s side (fig. 11). Thus, if ∣ψ̃⟩AnBn is the state after compression and
decompression, we would like that

∣ψ̃⟩AnBn ≈ ∣ψ⟩⊗nAB

(say, on average).
We can achieve this using the same protocol as before – but this time applied to the B-systems

only. Let us accordingly write P̃Bn for the typical projector defined in terms of the eigenvalues
{p,1 − p} of ρB ∶= trA [∣ψ⟩ ⟨ψ∣AB], and H̃Bn ⊆ (C2)⊗n. Then the protocol reads as follows:

• Measure the observable P̃Bn .

• If the outcome is 1, then the post-measurement state lives in (C2)⊗n ⊗ H̃Bn . We send over the
B-systems using roughly n(S(ρ) + δ) qubits.

• If the outcome is 0, send over some arbitrary state (or simply fail).
 

Figure 11: Alice wants to send half of her entangled states ∣ψ⟩⊗nAB over to Bob at transmission rate R.
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The probability that the measurement P̃Bn yields outcome 1 is given by

q ∶= ⟨ψ⊗nAB ∣1An ⊗ P̃Bn ∣ψ
⊗n
AB⟩ = tr [ρ⊗nB P̃Bn] → 1.

In this case, the post-measurement state is

(1An ⊗ P̃Bn) ∣ψAB⟩
⊗n

√
q

and its squared overlap with the original state is

1

q
∣⟨ψ⊗nAB ∣1An ⊗ P̃Bn ∣ψ

⊗n
AB⟩∣

2
=
q2

q
= q → 1.

It follows that the average overlap is at least

E∣⟨ψ⊗nAB ∣ψ̃AnBn⟩∣
2
≥ q2

→ 1.

Thus we have solved the problem of sending over half of an entangled state: Our compression
protocol works at an asymptotic rate of S(ρ) + δ qubits. Again, it turns out that this rate is optimal
– we will be able to prove this next time in lecture 9.

We thus obtain a second operational interpretation of the von Neumann entropy: When applied
to the reduced density matrix ρB of a bipartite pure state, it is the minimal rate of qubits required
to send over the B-systems of many copies of the state from Alice to Bob. This is very intuitive and
in line with our discussions in section 3.2 and problem 2.1: For pure states, the mixedness of the
reduced density operators is a signature of entanglement. The more entanglement there is in ∣ψ⟩AB
the more qubits we need to send over to Bob in order to create this state between Alice and Bob.
This gives a good justification why in the literature the expression

SE(ψAB) = S(ρA) = S(ρB) (8.1)

is often called the entanglement entropy of the bipartite pure state ∣ψ⟩AB.

Example. If ∣ψ⟩AB = ∣0⟩A ⊗ ∣0⟩B then we do not need to send any quantum information – we can
simply prepare the state ∣0⟩ on Bob’s end. If ∣ψ⟩AB = 1√

2
(∣00⟩AB + ∣11⟩AB) is a maximally entangled

state then we cannot compress the B-systems at all and need to send a rate of SE = 1.

The task that we just solved could be more aptly called “quantum state transfer”, since we seek
to transfer the state of the B-systems over to Bob while preserving all correlations with the purifying
A-systems (sadly, this term is usually used with a different connotation). It is a special case of the
more general problem of quantum state merging, where the receiver already possesses part of the
state – we will have a peek at this next week.

Remark. Again, note that our protocol only depended on the eigenvalues of ρB (equivalently, of
ρA). The same modification discussed in problem 3.3 allows us to build a universal protocol at fixed
rate S0 that works for all states whose entanglement entropy is bounded by SE < S0.

Remark. It is possible to show that the task of sending over half of a maximally entangled state at
minimal qubit cost is a more difficult problem than the compression of quantum sources in the sense
that whenever we have a protocol for the former we can use it to compress arbitrary quantum sources
with associated density operator ρB.
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8.2 Entanglement transformations

Let us talk some more about entanglement. For pure states, ∣ψ⟩AB ≠ ∣ψ⟩A ⊗ ∣ψ⟩B means that the
state is entangled. But how can be compare and quantify different states in their entanglement? One
approach is to assign to each state some arbitrary numbers that we believe reflect aspects of their
entanglement properties – e.g., the entanglement entropy SE from eq. (8.1), the Rényi entropy from
problem 2.1, or simply the collection of all eigenvalues of ρA or ρB. Yet, this might seem somewhat
ad hoc and so is not completely satisfactory.

A more operational approach would be to compare two states ∣φ⟩AB and ∣ψ⟩AB by studying
whether one can be transformed into the other: What family of operations should we consider in
such a transformation? Since our goal is compare entanglement, we should only allow for operations
that cannot create entanglement from unentangled states. We already briefly mentioned such a
family when we discussed mixed-state entanglement in section 4.1: It is LOCC, short for Local
Operations and Classical Communication. Here, we imagine that Alice and Bob each have their
separate laboratory.

• Local operations refers to arbitrary quantum operations that can be done on Alice’ and Bob’s
subsystems. We allow any combination of unitaries, adding auxiliary systems, performing
partial traces, and measurements.

• Classical communication refers to Alice and Bob’s ability to exchange measurement outcomes.
Thus, Bob’s local operations can depend on Alice’s previous measurement outcomes, and vice
versa.

Thus we are interested to study whether

∣ψ⟩AB
LOCC
Ð→ ∣φ⟩AB .

If yes, then we could say that ∣ψ⟩AB is at least as entangled as ∣φ⟩AB – indeed, the former is as useful
as the latter for any nonlocal quantum information processing task, since we can always convert
∣ψ⟩AB into ∣φ⟩AB when required.

Remark. Note that the setup here is very different from quantum data compression – there, we
wanted to minimize the amount of quantum communication sent. Here, we do not allow any quantum
communication.

Example 8.1. Consider the EPR pair or ebit ∣Φ+
2 ⟩ =

1√
2
(∣00⟩ + ∣11⟩), as well as its generalization,

the maximally entangled state in d-dimensions

∣Φ+
d⟩ ∶=

1
√
d
∑
i

∣ii⟩ .

It is intuitive and also true that
∣Φ+
d⟩

LOCC
Ð→ ∣Φ+

d′⟩

if and only if d ≥ d′. The “if ” is only obvious if d = 2n and d′ = 2n
′
, since in this case the transformation

can simply be achieved by tracing out n − n′ of the qubit. For the “only if”, one can argue that the
number of terms in the Schmidt decomposition, which is d for ∣Φ+

d⟩, can never increase under LOCC.
We will not prove this in class.
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However, it might be instructive to see concretely how the conversion ∣Φ+
3 ⟩ → ∣Φ+

2 ⟩ can be achieved,
since the general case can be proved completely analogously. The trick is to note that, while

∣Φ+
3 ⟩ =

1
√

3
(∣11⟩ + ∣22⟩ + ∣33⟩) ,

we can also write

∣Φ+
2 ⟩ = (1A ⊗UB)

1
√

3
(∣ψ1⟩ ∣1⟩ + ∣ψ2⟩ ∣2⟩ + ∣ψ3⟩ ∣3⟩) (8.2)

where UB is some unitary on B. Here, the ∣ψi⟩ ∈ C2 are normalized but non-orthogonal states
such that 1

3 ∑i ∣ψi⟩ ⟨ψi∣ =
1
2 ∑

2
i=1 ∣i⟩ ⟨i∣ (!). For example, you can use the three states constructed in

example 2.1.
Alice and Bob can now apply the following LOCC protocol: First, Alice applies the isometry

∣i⟩A ↦ ∣φi⟩A ⊗
1

√
3
∑
j

ωij ∣j⟩A′ ,

where ω = e2πi/3 is a primitive third root of unity (as in problem 1.4, this can be realized by adding
an auxiliary system and performing a unitary). The second system is necessary to ensure that this
is indeed an isometry (recall that the ∣φi⟩A alone are not orthogonal). When applied to ∣Φ+

3 ⟩, the
resulting state is

1

3
∑
i,j

ωij ∣φi⟩A ⊗ ∣j⟩A′ ⊗ ∣i⟩B .

Alice now measures her auxiliary A′ system in the standard basis. The probability of each outcome is
1/3. After discarding A′, the corresponding post-measurement state si

1
√

3
∑
i

ωij ∣φi⟩A ⊗ ∣i⟩B .

This almost looks as desired – except for the phases. To get rid of them, Alice sends j over to Bob,
and Bob applies the diagonal unitary ∣i⟩B ↦ ω−ij ∣i⟩B. We obtain

1
√

3
∑
i

∣φi⟩A ⊗ ∣i⟩B .

At last, Bob applies to unitary UB. Thus, Alice and Bob have obtained eq. (8.2) – done!

The theory of exact interconversion is solved for bipartite pure states. However, there are many
parameters – the entire spectrum of ρA and ρB matters (Nielsen, 1999, Nielsen and Vidal, 2001). It
turns out that the asymptotic theory simplifies tremendouly, and we will discuss this now. The key
idea is that instead of converting many copies of two arbitrary states into each other, we will study
the conversion into (and from) a common resource or “currency” of entanglement. This common
resource is the maximally entangled state or ebit ∣Φ+

2 ⟩ =
1√
2
(∣00⟩ + ∣11⟩).
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8.3 Entanglement concentration

The first problem that we want to study is the following: Given many copies of a state ∣ψ⟩AB , convert
them by LOCC into as many ebits as possible:

∣ψ⟩⊗nAB
LOCC
Ð→ ≈ ∣Φ+

2 ⟩
⊗Rn

Just as in the case of data compression, we are interested in the maximal rate R that can be
achieved with error going to zero for n→∞ (or rather its supremum). This is called the distillable
entanglement ED(ψ) of the state ∣ψ⟩AB.

For example, ED(∣φ+⟩) = 1 and, more generally, ED(∣Φ+
d⟩) = log d (cf. example 8.1). Instead of

proving directly, we will consider the general case right away.

We will approach this problem by first focusing on Alice’ Hilbert space,

(C2
)
⊗n

≅⊕
j

V A
n,j ⊗W

A
n,j ,

where the superscripts indicate that we refer to Alice. If we write ρA = trB [∣ψ⟩ ⟨ψ∣AB], then

ρ⊗nA ≅⊕
j

T (n,j)
ρA

⊗ 1WA
n,j

=⊕
j

pjρV An,j
⊗ τWA

n,j
.

On the right-hand side, we have written each direct summand as a probability (pj) times a tensor
product of density operators – this is possible since the direct summands are positive semidefinite.
Note that pj is nothing but the probability of obtaining outcome j when measuring Pj on Alice’s
qubits, and recall that τWA

n,j
= 1WA

n,j
/m(n, j) was our notation for a maximally mixed state. Now

suppose that Alice does indeed perform the measurement Pj on her qubits and receives outcome j.
Then her post-measurement state is ρV An,j ⊗ τWA

n,j
. What does the overall post-measurement state

look like? Let us first guess a purification. We can purify ρV An,j to some arbitrary ∣ψ̃⟩V An,jV
B
n,j

, and
τWA

n,j
to the maximally entangled state ∣Φ+⟩WA

n,jW
B
n,j

. Hence, a purification of her post-measurement
states looks like

∣ψ̃⟩V An,jV
B
n,j

⊗ ∣Φ+
⟩WA

n,jW
B
n,j

∈ (V A
n,j ⊗ V

B
n,j) ⊗ (WA

n,j ⊗W
B
n,j)

≅ (V A
n,j ⊗W

A
n,j) ⊗ (V B

n,j ⊗W
B
n,j) ⊆ (C2

)
⊗n

⊗ (C2
)
⊗n.

We now use an important result that we have not met before: Any two purifications of a quantum
state are related by a unitary on the auxiliary Hilbert space. In the present context, this means that
the post-measurement state is precisely equal to

(1An ⊗UBn) (∣ψ̃⟩V An,jV
B
n,j

⊗ ∣Φ+
⟩WA

n,jW
B
n,j

) ,

where UBn is some unitary acting on Bob’s Hilbert space. If Bob applies U †
Bn and both parties

discard their Vn,j-systems, they arrive at the maximally entangled state

∣Φ+
⟩WA

n,jW
B
n,j
.
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But with high probability, j will be such this is a maximally entangled state of dimension no smaller
than 2n(S(ρA)−δ). According to example 8.1, we can convert this into ⌊n(S(ρA) − δ)⌋ ebits.

Thus we find that using the preceding entanglement concentration protocol, which is completely
universal, we can distill entanglement at rates arbitrary close to the entanglement entropy SE(ψ) =
S(ρA). In other words:

ED(ψ) ≥ SE(ψ)

Remark. Since ∣ψ⟩⊗nAB is in the symmetric subspace Symn(C2 ⊗C2), we can identify the maximally
entangled state much more precisely by using representation theory. This avoids the need to appeal to
Uhlmann’s theorem and makes the protocol quite a bit more concrete. You are welcome pursue this
idea in problem 4.4.

Is this rate optimal? Yes – we will show this next time using a “thermodynamics argument”.

• First, we will study the reverse transformation (i.e., from perfects ebits to copies of ∣ψ⟩AB).
We will show that the minimal rate of ebits required, known as the entanglement cost EC(ψ),
is no more than SE(ψ).

• We can thus consider the “cyclic process” starting and ending at ebits:

φ
⊗EC(ψ)n
+ → ψ⊗n → φ

⊗ED(n)
+

• Necessarily, EC(ψ) ≥ ED(ψ), because otherwise we could create ebits from nothing! Why is
this not possible? See example 8.1 above for the exact case; the approximate case follows by
tracking epsilons and deltas.

• By combing all results, we will find that SE(ψ) ≥ EC(ψ) ≥ ED(ψ) ≥ SE(ψ) so they are all
equal:

SE(ψ) = EC(ψ) = ED(ψ)

This is the main result of the bipartite entanglement of pure states, and it gives us two new operational
interpretations of the von Neumann entropy which justify its use as an entanglemen measure for
pure states: The von Neumann entropy measures the maximal rate at which ebits can distilled from
many copies of a state ∣ψ⟩AB, as well as the minimal rate of ebits required to produce many copies
of ∣ψ⟩AB (up to arbitrarily high fidelity).

More generally, if we have two states ∣ψ⟩AB and ∣φ⟩AB then we can convert the former into
the latter by LOCC at optimal rate SE(ψ)/SE(φ) – this is a satisfyingly simple resolution of the
question that we set out to solve.

Discussion

Let us close with two remarks. First, the approach that we pursued above to study entanglement
transformations was rooted in the idea of the ebit as a resource. This idea of setting up resource
theories to compare different quantum states in their relative strength for certain tasks has been
quite fruitful in quantum information theory, and there are many further examples (e.g., in quantum
thermodynamics).

Second, you might wonder how the above story generalizes to mixed states ρAB. It turns out
that in this case the entanglement theory is much more complicated. We already saw hints of this
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in section 4.1 when we discussed that even deciding whether a given state ρAB is separable is in
general an NP-hard problem. In addition, while the same definitions can be made as above, there
are many new phenomena. For example, in general we have that EC(ρ) > ED(ρ), meaning that
the conversion via ebits is in general asymptotically irreversible! In fact, there are entangled mixed
states states such that EC(ρ) > 0 while ED(ρ) = 0. We call them bound entangled states – these
states are entangled but no ebits can be distilled from them at a positive rate.

Relatedly (because every mixed state ρAB can be purified to a tripartite pure states ∣ψ⟩ABC) the
entanglement of pure states with more than two subsystems is similarly complicated.
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Entanglement dilution, quantum teleportation, resource inequalities
Lecture 9 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Last time, we discussed a number of characterizations of the entanglement entropy SE(ψ) =
S(ρA) = S(ρB) of bipartite pure state ∣ψ⟩AB:

(i) SE(ψ) describes the optimal quantum compression rate that can be achieved sending over the
B-systems of large number of copies of ∣ψ⟩AB,

(ii) SE(ψ) is equal to both the distillable entanglement ED(ψ) and the entanglement cost EC(ψ),
i.e., the rate of ebits that can be obtained from a large number of copies of ∣ψ⟩AB and vice
versa (with vanishing error as n→∞):

∣ψ⟩⊗nAB LOCC ∣Φ+
2 ⟩
⊗nSE(ψ)

For (ii), we wanted to use the chain of inequalities

SE(ψ) ≥ EC(ψ) ≥ ED(ψ) ≥ SE(ψ). (9.1)

But we still need to prove the first inequality in eq. (9.1), i.e., that the entanglement cost is at most
the entanglement entropy. Moreover, we had claimed without proof that the entanglement entropy
is the optimal quantum compression rate in (i). Today, we will discuss both of these results.

9.1 Entanglement dilution

We first consider the task of entanglement dilution, where we try to construct many copies of a pure
state ∣ψ⟩AB from ebits at some rate R:

∣Φ+
2 ⟩
⊗Rn LOCC

Ð→ ∣ψ⟩⊗nAB

Our idea is follows: Alice can always prepare the entangled state ∣ψ⟩⊗nAB in her laboratory. According
to (i), quantum data compression would allow her to transfer the B-systems to Bob at high fidelity by
sending roughly n(SE(ψ) + δ) qubits. However, sending qubits is disallowed in the current scenario.
Can we instead use ebits and LOCC?

It turns out that this is indeed possible. The corresponding protocol is famously known as
quantum teleportation (Bennett et al., 1993).
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Figure 12: Illustration of the quantum teleportation task: Alice would like to send her M qubit over
to Bob, while preserving any entanglement with system E.

9.2 Quantum teleportation

In teleportation, Alice and Bob share an ebit ∣Φ+
2 ⟩AB and the goal is for Alice to send an additional

qubit M (for “message”) that is in her possession over to Bob. We will assume that the qubit M
is in a completely unknown state and that it might be entangled with some other system, denoted
by E (for “environment”). Just as in quantum data compression, we would like to preserve this
entanglement. In mathematical terms, what we would like to achieve is the transformation

∣ψ⟩ME ⊗ ∣Φ+
2 ⟩AB

LOCC
Ð→ ∣ψ⟩ME ,

where initially systems AM are in Alice’ possession and B in Bob’s possession and where we would
like to end with M in Bob’s possession. See fig. 12 for an illustration.

The no cloning theorem suggests that we can only succeed with this task if Alice learns nothing
about the state of M . On the other hand, it is clear that she has to apply some operation that
couples her A and M systems in order to achieve the teleportation task. Since maximally entangled
states are locally maximally mixed (problem 2.1), this suggests the following idea: Alice might
measure AM in a basis of maximally entangled states, such as

∣φ0⟩ =
1

√
2
(∣00⟩ + ∣11⟩) = (1⊗ 1) ∣Φ+

2 ⟩ ,

∣φ1⟩ =
1

√
2
(∣00⟩ − ∣11⟩) = (1⊗Z) ∣Φ+

2 ⟩ ,

∣φ2⟩ =
1

√
2
(∣01⟩ + ∣10⟩) = (1⊗X) ∣Φ+

2 ⟩ ,

∣φ3⟩ =
1

√
2
(∣01⟩ − ∣10⟩) = (1⊗XZ) ∣Φ+

2 ⟩ ,

(9.2)

which we may summarize by ∣φk⟩ = (1⊗Uk) ∣Φ
+
2 ⟩. When she performs the projective measurement
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PAM,k = ∣φk⟩ ⟨φk∣AM ,

Pr(outcome k) = (⟨ψ∣ME ⊗ ⟨Φ+
2 ∣AB) (PAM,k ⊗ 1EB) (∣ψ⟩ME ⊗ ∣Φ+

2 ⟩AB)

= tr [PAM,k trEB [∣ψ⟩ ⟨ψ∣ME ⊗ ∣Φ+
2 ⟩ ⟨Φ

+
2 ∣AB]]

= tr [PAM,k (trE [∣ψ⟩ ⟨ψ∣ME] ⊗
1A

2
)]

=
1

2
tr [∣φk⟩ ⟨φk∣AM (trE [∣ψ⟩ ⟨ψ∣ME] ⊗ 1A)]

=
1

2
tr [

1M

2
trE [∣ψ⟩ ⟨ψ∣ME]]

=
1

4
tr [∣ψ⟩ ⟨ψ∣ME] =

1

4
.

Thus her measurement outcome is completely random and uninformative, as desired. If the outcome
is k, what is the corresponding post-measurement state on ME? It is given by

2 (⟨φk∣AM ⊗ 1EB) (∣ψ⟩ME ⊗ ∣Φ+
2 ⟩AB)

= 2 (⟨φk∣AM ⊗ 1EB) (1ME ⊗ ∣Φ+
2 ⟩AB) ∣ψ⟩ME

= 2 (⟨Φ+
2 ∣AM ⊗ 1EB) (1ME ⊗ ∣Φ+

2 ⟩AB) (U †
M,k ⊗ 1E) ∣ψ⟩ME

= 2

⎛
⎜
⎜
⎝

1E ⊗ (⟨Φ+
2 ∣AM ⊗ 1B) (1M ⊗ ∣Φ+

2 ⟩AB)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=?

⎞
⎟
⎟
⎠

(U †
M,k ⊗ 1E) ∣ψ⟩ME .

Let’s calculate the indicated term directly from its definition:

(⟨Φ+
2 ∣AM ⊗ 1B) (1M ⊗ ∣Φ+

2 ⟩AB)

=
1

2
∑
x,y

(⟨x∣A ⊗ ⟨x∣M ⊗ 1B) (∣y⟩A ⊗ 1M ⊗ ∣y⟩B)

=
1

2
∑
x,y

⟨x∣y⟩ ∣y⟩B ⟨x∣M =
1

2
∑
x

∣x⟩B ⟨x∣M

Remarkably, this is nothing but the identity map from two qubit M to B (up to an overall factor
1/2)! As a direct consequence, we obtain that the post-measurement state is given by

2

⎛
⎜
⎜
⎝

1E ⊗ (⟨Φ+
2 ∣AM ⊗ 1B) (1M ⊗ ∣Φ+

2 ⟩AB)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=?

⎞
⎟
⎟
⎠

(U †
M,k ⊗ 1E) ∣ψ⟩ME

= (1E ⊗∑
x

∣x⟩B ⟨x∣M)(U †
M,k ⊗ 1E) ∣ψ⟩ME = (U †

B,k ⊗ 1E) ∣ψ⟩BE ,

where we write ∣ψ⟩BE for the same state as ∣ψ⟩ME but now living in the two-qubit Hilbert space
corresponding to systems BE rather than ME. If Alice sends over k ∈ {0,1,2,3}, which requires
two bits of classical communication, then Bob can apply the unitary UB,k on his system. Thus, our
two protagonists have produced the state ∣ψ⟩BE (or ∣φk⟩AM ⊗ ∣ψ⟩BE , if we are interested in the state
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Figure 13: Quantum teleportation as a quantum circuit.

of all four quantum systems). This concludes the teleportation protocol – we have successfully sent
over Alice’ M system to Bob while preserving all entanglement with E.

See fig. 13 for an illustration of the teleportation procedure in quantum circuit notation. The
notation will be clear to you, but next time, in lecture 10, we will give a more systematic introduction
to quantum circuits. Note that quantum teleportation is indeed an LOCC protocol – we only applied
local operations and Alice needed to send over 2 bits of classical communication. We emphasize that
no asymptotics was required and the teleportation procedure worked perfectly, without disturbing
the sent-over state at all. Moreover, it is composable in the sense that we can send over a state of N
qubits by using N ebits (and 2N bits of classical communication).

From quantum compression to entanglement dilution

In particular, we can use this to convert any quantum data compression protocol into a entanglement
dilution protocol at the same rate: Alice simply prepares the target state ∣ψ⟩⊗nAB in her laboratory
and then applies the data compression protocol, with quantum communication replaced by ebits
and LOCC. In particular, this is true for an optimal quantum compression protocol. It follows that

SE(ψ) ≥ R
opt
compr(ψ) ≥ EC(ψ) ≥ ED(ψ) ≥ SE(ψ)

where we denote by Ropt
compr(ψ) the optimal quantum compression rate for many copies of ∣ψ⟩AB.

The first inequality holds because we know from lecture 7 that we can compress at rate SE(ψ); the
second inequality holds by what we just discussed; and the remaining inequalities we had already
justified last time. As a consequence,

SE(ψ) = R
opt
compr(ψ) = EC(ψ) = ED(ψ).

We have thus proved both outstanding claims in points (i) and (ii) mentioned at the beginning of
today’s lecture.

Entanglement swapping

Teleportation can also be used to establish entanglement between distant parties. For example,
suppose that Alice and Bob are completely uncorrelated but that each of them shares an ebit with
an intermediate party, Charlie, as displayed in fig. 14. Charlie and Bob can use their ebit ∣Φ+

2 ⟩C2B

to teleport over Charlie’s C1 system to Bob. The result is a maximally entangled state ∣Φ+
2 ⟩AB
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Figure 14: Entanglement swapping establishes entanglement by using quantum teleportation through
intermediate parties (for simplicity, only a single intermediate party is displayed).

between Alice and Bob. (Here, we crucially used the fact that teleportation preserves the pre-existing
entanglement between C1 and A.)

The very same idea works if we have many intermediate parties. By successive teleportation,
we can establish long-range entanglement between Alice and Bob. This protocol is known as
entanglement swapping.

9.3 Resource inequalities

We have seen that it can be quite useful to compare different information processing resources with
each other. In quantum information theory we like to use a formal notation for this. For example,
we would write teleportation as a resource inequality

ebit + 2[c→ c] ≥ [q → q]. (9.3)

This inequality means that an ebit and 2 bits of classical communication ([c→ c]) can be used to
send one qubit of quantum communication ([q → q]). Sometimes, ebits are also denoted by [qq].

What other resource inequalities do we know? Clearly,

[q → q] ≥ ebit,

since we can always prepare the ebit at Alice’ side and send over half of it to Bob. However,
ebit /≥ [q → q], since entanglement alone cannot be used to communicate.

Another example is
[q → q] ≥ [c→ c],

since Alice can encode a classical bit x into the state ∣x⟩ of a qubit, send that qubit over, and have
Bob measure {∣x⟩ ⟨x∣}. However, [q → q] /≥ 2[c→ c]. This is a consequence of the Holevo bound, but
we have not had time to discuss this in class.
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Figure 15: In superdense coding, Alice can communicate two classical bits to Bob by sending over a
single qubit that is part of a shared ebit.

Superdense coding

What is in fact possible, though, is to send over 2 classical bits by sending a qubit if we can use
some entanglement:

ebit + [q → q] ≥ 2[c→ c]. (9.4)

We can think of this as an analogue or “dual” of teleportation. However, it is not a converse, since
both protocols use ebits as a resource. By combining eqs. (9.3) and (9.4), we find that

[q → q] ≡ 2[c→ c] (mod ebit),

although this is not a very standard notation.
How can we achieve eq. (9.4)? The corresponding protocol is known as superdense coding, and it

is in fact very simple: Suppose that Alice and Bob share an ebit ∣Φ+
2 ⟩AB. Alice first applies one out

of the four unitaries Uk to her qubit before sending it over to Bob. But now Bob has one of the
four states ∣φk⟩ in his possession. Since they are orthogonal, he can simply perform the projective
measurement Pk = ∣φk⟩ ⟨φk∣ to perfectly distinguish the four states and thereby recover k. In this way,
Alice can send over an arbitrary message k ∈ {0, . . . ,3} to Bob, amounting to two bits of classical
communication. See fig. 15 for an illustration.

A glance at quantum channels

At this point, it would be natural to introduce quantum channels which are described mathematically
by so-called completely positive, trace-preserving maps. They provide a unified framework for
modelling general quantum information processing protocols. In this course, we only had time for a
brief discussion at the end of today’s lecture, but you are encouraged to have a look at, e.g., Wilde
(2013).
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Quantum circuits, swap test, quantum Schur transform
Lecture 10 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

In the past two weeks, we used an important tool, the decomposition

(C2
)
⊗n

≅⊕
j

Vj ⊗Cm(n,j) (10.1)

of the n-qubit Hilbert space into irreducible representations of SU(2). We used the “Schur-Weyl
toolbox” obtained in this way to solve the spectrum estimation problem, various data compression
problems, and to study entanglement transformations (lectures 5, 6, 8 and 9). A fundamental role
was played by the the projections Pj onto the different sectors. But how would we realize these
projections in practice?

Recall that the notation ≅ in eq. (10.1) refers to a unitary intertwiner

(C2
)
⊗n
→⊕

j

Vj ⊗Cm(n,j).

The n-qubit Hilbert space on the left-hand side has the product basis

∣x1, . . . , xn⟩ = ∣x1⟩ ⊗ . . .⊗ ∣xn⟩ ,

while the right-hand side has a natural “Schur-Weyl basis” labeled by

∣j,m, k⟩

where j ∈ {. . . , n2 − 1, n2 }, m ∈ {−j, . . . , j}, k ∈ {1, . . . ,m(n, j)}. Since the values of m and k are
constrained by j, the right-hand side space is not a tensor product. However, we can safely think of
it as a subspace of the tensor product space

Cn ⊗Cn+1
⊗C2n ,

since (i) there are at most n options for j, (ii) the dimension of Vj is 2
j + 1 ≤ n + 1, and (iii) certainly

m(n, j) ≤ 2n. Thus, we obtain an isometry

USchur∶ (C2
)
⊗n
Ð→ Cn ⊗Cn+1

⊗C2n (10.2)

This transformation is called the quantum Schur transform (fig. 16, (a)).
Why is this convenient? The isometry nicely separates the three pieces of information that we

care about – the spin j and the corresponding vectors in Vj and in Cm(n,j) – into different subsystems.
For example, we can now implement the spin measurement {Pj} by first applying USchur and then
measuring the first subsystem. In other words,

Pj = U
†
Schur (∣j⟩ ⟨j∣ ⊗ 1⊗ 1)USchur.

This is visualized in fig. 16, (b). The goal of today’s lecture will be to design a quantum circuit for
the quantum Schur transform.
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(a)

 

(b)

 

Figure 16: (a) The Schur transform (10.2). (b) We can implement the measurement {Pj} by first
applying the Schur transform and then measuring the j-system.

10.1 Quantum circuits

Just like we typically describe computer programs or algorithms in terms of simple elementary
instructions, we are interested in constructing a unitary transformation U of interest from “simple”
building blocks. These building blocks are quantum gates, i.e., unitary operations that involve only
a smaller number of qubits (or qudits). We obtain a quantum circuit by connecting the output
of some quantum gates by “wires” with the inputs of others. We will also allow measurements of
individual qubits in the standard basis {∣i⟩} as well as the initialization of qubits in basis states ∣i⟩.
For example, the circuit in fig. 17 first adds a qubit in state ∣0⟩, then performs the unitary

(U3 ⊗U4) (1C2 ⊗U2 ⊗ 1C2) (U1 ⊗ 1C2 ⊗ 1C2)

and then measures one of the qubits. In the absence of measurements and initializations, a quantum
circuit performs a unitary transformation from the input qubits to the output qubits. In the absence
of measurements alone, the quantum circuit implements an isometry from the input qubits to the
outputs qubits.

Remark. The number of gates in a quantum circuit is known as the (gate) complexity of that
circuit. Intuitively, the higher the complexity the longer it would take a quantum computer to run
this circuit. This is because we expect that a quantum computer, in completely analogy to a classical
computer, will be able to implement each gate and measurement in a small, fixed amount of time.
Much of the field of quantum computation is concerned with finding quantum circuits and algorithms
of minimal complexity – with a particular emphasis on finding quantum algorithms that outperform
all known classical algorithms. For example, Peter Shor’s famous factoring algorithm outperforms
all known classical factoring algorithms. Just like quantum information theory, this is a very rich
subject. In this course, we only have time for a glance, but I encourage you to look at Nielsen and
Chuang (2002), Kitaev et al. (2002) for further detail if you are interested in this subject.

To practice, let us consider some interesting gates. For any single-qubit unitary U , there is
a corresponding single-qubit gate. For example, the Pauli X-operator X = ( 1

1 ) gives rise to the
so-called X-gate or NOT-gate
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Figure 17: Illustration of a quantum circuit, composed of four unitary quantum gates and a single
measurement. The first qubit is initialized in state ∣0⟩ and the other three wires are inputs to the
circuit.

which maps X ∣0⟩ = ∣1⟩, X ∣1⟩ = ∣0⟩. Another example is the so-called Hadamard gate

which maps H ∣0⟩ = ∣+⟩, H ∣1⟩ = ∣−⟩. Written as a unitary matrix, H = 1√
2
( 1 1

1 −1 ).
Single-qubit gates are not enough – for example, they do not allow us to create an entangled

state starting from product states. A powerful class of gates can be obtained by performing a
unitary transformation U depending on the value of a control qubit. This is a standard but slightly
misleading figure of speech, since we do not actually want to measure the value of the control qubit.
To be more precise, we define the controlled unitary gate

by

CU(∣0⟩ ⊗ ∣ψ⟩) = ∣0⟩ ⊗ ∣ψ⟩ ,

CU(∣1⟩ ⊗ ∣ψ⟩) = ∣0⟩ ⊗ (U ∣ψ⟩)
(10.3)

(and extend by linearity). It is easy to see that CU is indeed a unitary (indeed, C(U †) is its inverse).

Remark 10.1. More generally, if U0, U1 are two unitaries then we can define a controlled unitary
by ∣x⟩ ↦ Ux ∣x⟩. We will use this below when constructing a quantum circuit for the Clebsch-Gordan
transformation.
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For example, if U is the NOT-gate then the controlled not (CNOT) gate maps

CNOT ∣0,0⟩ = ∣0,0⟩ ,

CNOT ∣0,1⟩ = ∣0,1⟩ ,

CNOT ∣1,0⟩ = ∣1,1⟩ ,

CNOT ∣1,1⟩ = ∣1,0⟩ ,

i.e.,

CNOT ∣x, y⟩ = ∣x,x⊕ y⟩ ,

where, as usual, ⊕ denotes addition modulo 2. This explains why the CNOT gate is often denoted by

Using these ingredients, we can already build a number of interesting circuits.

Remark. In fact, any N -qubit unitary can be to arbitrarily high fidelity approximated by quantum
circuits composed only of CNOT-gates and single qubit gates. We say, that the CNOT gate together
with the single qubit gates form a universal gate set. (In fact, CNOT together with a finite number
of single qubit gates suffices.)

Entanglement and teleportation

For example, consider the following circuit:

It is plain that this creates an ebit starting from the product state ∣00⟩. More generally, for each
product basis state ∣xy⟩ the circuit produces one of the four maximally entangled basis vectors ∣φk⟩
from eq. (9.2) that we used in teleportation. Indeed, the circuit maps

∣x, y⟩ ↦
1

√
2
(∣0⟩ + (−1)x ∣1⟩) ⊗ ∣y⟩ =

1
√

2
(∣0, y⟩ + (−1)x ∣1, y⟩) .

As a consequence, this allows us to write down a more detailed version of the teleportation circuit
from last time (fig. 13):
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The doubled wires (pink) denote the classical measurement outcomes (two bits x and y, corresponding
to the single integer k ∈ {0,1,2,3} from last time). It is a fun exercise to verify that this circuit
works as desired, i.e., that it implements an identity map from the input qubit M to the output
qubit B.

10.2 The swap test

We can implement the swap unitary F ∶ ∣xy⟩ ↦ ∣yx⟩ by a quantum circuit composed of three CNOTs.

This is called the swap gate.
We can also write down a corresponding controlled swap gate, defined as in eq. (10.3) for U = F .

Note that this is a three qubit gate. In problem 4.5, you will find a quantum circuit for the controlled
swap gate that involves only single-qubit and two-qubit gates.

When we started studying the spectrum estimation problem in lecture 5, we first considered
the case that we were given n = 2 two copies of our state as a “warmup” in example 5.3. The idea
was that the two-qubit Hilbert space decomposes into the symmetric (triplet) and antisymmetric
(singlet) subspaces,

C2
⊗C2

= Sym2
(C2

) ⊕⋀
2
(C2

),

which is of course a special case of eq. (10.1) since the triplet is a spin-1 irrep and the singlet a spin-0
irrep of SU(2). The swap operator F acts by +1 on the triplet but by by −1 on the singlet, i.e.,

F = P1 − P0,
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so measuring F is completely equivalent to performing the projective measurement {P0, P1}.
How can we implement this measurement by a quantum circuit? Consider the following circuit,

which uses the controlled swap gate discussed above:

(10.4)

Why does this circuit perform the desired measurement? Suppose that we initialize the B-wire in
state ∣0⟩ and the A-qubits in some arbitrary state ∣Ψ⟩. The Hadamard gate sends ∣0⟩ ↦ ∣+⟩ and so
the quantum state right after the controlled swap gate (first dashed line) is equal to

1
√

2
(∣0⟩B ⊗ ∣Ψ⟩A + ∣1⟩B ⊗ F ∣Ψ⟩A)

After the second Hadamard gate (second dashed line), we obtain

1

2
[(∣0⟩B + ∣1⟩B) ⊗ ∣Ψ⟩A + (∣0⟩B − ∣1⟩B) ⊗ F ∣Ψ⟩A]

= ∣0⟩B ⊗
1 + F

2
∣Ψ⟩A + ∣1⟩B ⊗

1 − F

2
∣Ψ⟩A

= ∣0⟩B ⊗Π2 ∣Ψ⟩A + ∣1⟩B ⊗ (1 −Π2) ∣Ψ⟩A

= ∣0⟩B ⊗ P1 ∣Ψ⟩A + ∣1⟩B ⊗ P0 ∣Ψ⟩A ,

where Π2 is the projector onto symmetric subspace, which for n = 2 qubits is nothing but the spin-1
projection P1. The last NOT simply relabels ∣0⟩B ↔ ∣1⟩B, leading to

∣1⟩B ⊗ P1 ∣Ψ⟩A + ∣0⟩B ⊗ P0 ∣Ψ⟩A .

In summary, the quantum circuit achieves the following task: It transforms an arbitrary input state
∣Ψ⟩A into the following state right before the measurement of the B-qubit (last, pink dashed line)

∣Ψ⟩A ↦ ∑
j=0,1

∣j⟩B ⊗ Pj ∣Ψ⟩A .

Hence
Pr(outcome j) = ⟨ΨA∣Pj ∣ΨA⟩ ,

and the post-measurement state on the A-qubits is proportional to Pj ∣Ψ⟩A. Thus, we have successfully
implemented the measurement {P0, P1}. The quantum circuit (10.4) is known as the swap test.

Applications

The swap test has many applications:
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• If we choose ρ⊗2 as input state for the A-qubits, then

Pr(outcome j) = tr [Pjρ
⊗2] ,

i.e.,

Pr(outcome 1) =
1

2
(1 + trρ2) = 1 −Pr(outcome 0),

from which we can learn information about the spectrum of ρ. In particular, it allows us to
estimate the purity trρ2 of the unknown quantum state (cf. example 5.3).

This was our original motivation for implementing the swap test.

• If we choose ∣ψ⟩A1
⊗ ∣φ⟩A2

as input state, then

Pr(outcome 1) =
1

2
(1 + ⟨ψA1 ⊗ φA2 ∣F ∣ψA1 ⊗ φA2⟩)

=
1

2
(1 + ⟨ψA1 ⊗ φA2 ∣φA1 ⊗ ψA2⟩) =

1

2
(1 + ∣⟨ψ∣φ⟩∣2) ,

(10.5)

which allows us to estimate the overlap ∣⟨ψ∣φ⟩A1
∣ between the pure states ∣ψ⟩ and ∣φ⟩. Thus,

the swap test can be used to test two unknown pure states for equality.

The swap test can be readily generalized to qudits.

Remark. There is a fun application of the swap test known as quantum fingerprinting, which we
might discuss in class if there is enough time (Buhrman et al., 2001): The rough idea goes as follows:
We can find 2n many pure states ∣ψ(x⃗)⟩ ∈ Ccn, indexed by classical bit strings x⃗ of length n, with
pairwise overlaps

⟨ψ(x⃗)∣ψ(y⃗)⟩ ≤
1

2
.

Here c > 0 is some constant. Thus the quantum states live in a space of only order logn many qubits!
(How can we justify the existence of such vectors? One way is to just choose them at random and
estimate probabilities using a more refined version of our calculations for the symmetric subspace, see
Harrow (2013) for more detail.) If we perform k swap tests on ∣ψ(x⃗)⟩⊗k ⊗ ∣ψ(y⃗)⟩⊗k then we obtain

x⃗ ≠ y⃗ ⇒ Pr(outcome 1 for all k swap tests) = (
3

4
)
k

≈ 0

Thus the probability of outcome 1 is arbitrarily small, controlled only by the parameter k (but not n).
In this sense, we can use the states ∣ψ(x⃗)⟩ as short “fingerprints” for the classical bit strings x⃗. The
latter are require n bits to specify, while the fingerprints only need order k logn many qubits (this is
not even optimal, but sufficient for our purposes).

Remarkably, while this allows us to test the fingerprints pairwise for equality with high certainty,
it is not possible to determine the original bitstring ∣x⃗⟩ from its fingerprint ∣ψ(x⃗)⟩ to good fidelity.
This is ensured by the same Holevo bound mentioned last time in section 9.3, which ensures that we
cannot communicate more than one classical bit by sending over a single qubit (in the absence of
ebits).
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10.3 The quantum Schur transform

Now that we have acquired some familiarity with quantum circuitry, we will turn towards solving
our actual goal for today – finding a quantum circuit for the Schur transform (10.2),

USchur ∶ (C2
)
⊗n

≅⊕
j

Vj ⊗Cm(n,j)
Ð→ Cn ⊗Cn+1

⊗C2n

(cf. fig. 16). We’ll follow the exposition in Christandl (2010).

The Clebsch-Gordan isometry

In lecture 6, we obtained the multiplicities m(n, j) by successively applying the Clebsch-Gordan
rule,

Vj ⊗ V1/2 ≅
j+ 1

2

⊕
j′=j− 1

2

Vj′ . (10.6)

From your quantum mechanics class you know that the spin-j representation Vj has a basis ∣j,m⟩

with m = −j, . . . , j. The matrix elements of the basis transformation corresponding to (10.6) are
known as the Clebsch-Gordan coefficients. They can packaged up in terms of unitary 2 × 2-matrices
U(j,m) such that

∣j,m⟩ ⊗ ∣
1

2
, s⟩ =

1
2

∑
s′=− 1

2

U(j,m)s,s′ ∣j + s
′,m + s⟩ . (10.7)

for s = ±1
2 .

Remark. Why is this the case, and how can these coefficients be computed? The defining property
of the basis vectors ∣j,m⟩ of Vj is that

Z̃ ∣j,m⟩ = 2m ∣j,m⟩ , (10.8)

where Z̃ denotes the action of the “generator” Z of SU(2), as discussed in remark 5.4. On the other
hand, if we consider the action of the generator on the tensor product Vj ⊗ V1/2, then the generator
Z acts by

(Z̃ ⊗ 1 + 1⊗ Z̃)(∣j,m⟩ ⊗ ∣
1

2
, s⟩) = 2(m + s) (∣j,m⟩ ⊗ ∣

1

2
, s⟩) .

By comparing with eq. (10.8), this means that ∣j,m⟩ ⊗ ∣12 , s⟩ can indeed be written as a linear
combination of ∣j′,m′⟩ with m′ =m + s – that is, in the form of eq. (10.7).

How can the coefficients be determined? First, note that the only way of obtaining m′ = j + 1
2 is

by choosing m = j and s = 1
2 . Thus,

∣j +
1

2
, j +

1

2
⟩ = ∣j, j⟩ ⊗ ∣

1

2
,
1

2
⟩ . (10.9)

Now you will remember from your quantum mechanics that the spin lowering operator S± =X − iY
acts by

S̃− ∣j,m⟩ = 2
√
j(j + 1) −m(m − 1) ∣j,m − 1⟩ .
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By successively acting with S− on eq. (10.9) (i.e., by S̃− on the left and by S̃− ⊗ 1 + 1⊗ S̃− on the
right), this allows us to obtain an expression of the form

∣j +
1

2
,m′

⟩ = # ∣j,m′
−

1

2
⟩ ⊗ ∣

1

2
,
1

2
⟩ +# ∣j,m′

+
1

2
⟩ ⊗ ∣

1

2
,−

1

2
⟩

for some coefficients #. Thus we have identified Vj+ 1
2
in Vj ⊗ V1/2. Next, we observe that

∣j −
1

2
, j −

1

2
⟩ = # ∣j, j − 1⟩ ⊗ ∣

1

2
,
1

2
⟩ +# ∣j, j⟩ ⊗ ∣

1

2
,−

1

2
⟩ (10.10)

is now uniquely determined by orthogonality to ∣j + 1
2 , j −

1
2⟩. We can now similarly obtain the

coefficients in

∣j −
1

2
,m′

⟩ = # ∣j,m′
−

1

2
⟩ ⊗ ∣

1

2
,
1

2
⟩ +# ∣j,m′

+
1

2
⟩ ⊗ ∣

1

2
,−

1

2
⟩

by successfully applying the action of the generator S− to eq. (10.10).

We now define the Clebsch-Gordan isometry UCG,

as the isometry that sends

∣j,m,x⟩ ↦ ∣j,m⟩ ⊗ ∣
1

2
, s⟩ ↦U(j,m)s, 1

2
∣j +

1

2
,m + s⟩ ⊗ ∣+⟩

+U(j,m)s,− 1
2
∣j −

1

2
,m + s⟩ ⊗ ∣−⟩ ,

where we first relabel the standard basis ∣x⟩ of C2 to ∣12 , s⟩ of V1/2, with s ∶= 1
2 − x ∈ {±1

2}, and then
apply the Clebssch-Gordan transformation. (To be precise, we should restrict the possible values of
j to some jmax to obtain a finite matrix.)

What is the meaning of the output p? In eq. (10.7), the left-hand side spin j was fixed, but the
spin j is now part of the input. Since the same j′ can be obtained from two possible values of j, we
use an additional output p to remember the “direction” by which we arrived at j′ (that is, j′ = j + p

2).
Only then is UCG an isometry.

Schematically, the Clebsch-Gordan isometry UCG can be implemented by a quantum circuit of
the following form

where the middle part uses the slightly more general notion of a controlled unitary described in
remark 10.1, mapping ∣j,m, s⟩ to ∣j,m⟩ ⊗U(j,m) ∣s⟩.
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The quantum Schur transform

We now obtain the quantum Schur transform USchur from eq. (10.2) by composing n Clebsch-Gordan
transformations:

We input the n qubits into the wiresX1, . . . ,Xn and the output consists of J ,M , and P = (P1, . . . , Pn).
A moments thought shows that this indeed implements the desired transformation.

In particular, we can implement the spectrum estimation measurement {Pj} by first applying the
quantum Schur transform and then measuring the J-system in the standard basis (as in fig. 16, (b)).

Remark. We can expand

USchur ∣Ψ⟩ = ∑
j

ψj,m,p⃗ ∣j⟩J ⊗ ∣m⟩M ⊗ ∣p⃗⟩P ,

where p⃗ ∈ {±}n. Then ψj,m,p⃗ ≠ 0 only if p⃗ is a sequence ∣+ − + + − . . .⟩P that corresponds to a path
from (0,0) to (n, j) in fig. 9.

At last, let us discuss some concrete examples to make sure that we fully understand what is
going on:

Example (n=1). For a single qubit, the Schur transform is completely trivial:

It maps

∣0⟩X ↦ ∣
1

2
⟩
J
⊗ ∣

1

2
⟩
M
⊗ ∣+⟩P

∣1⟩X ↦ ∣
1

2
⟩
J
⊗ ∣−

1

2
⟩
M
⊗ ∣+⟩P

Note that the P-system is always in the ∣+⟩ state, corresponding to the path (0,0) → (1
2 ,1).

Example (n=2). For two qubits, the Schur transform
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maps

∣0,0⟩X ↦ ∣1⟩J ⊗ ∣1⟩M ⊗ ∣++⟩P

∣1,1⟩X ↦ ∣1⟩J ⊗ ∣−1⟩M ⊗ ∣++⟩P

(because those tensors are in the symmetric subspace, and Z̃ acts by ±2, respectively), while

∣0,1⟩X =
1

√
2

∣0,1⟩ + ∣1,0⟩
√

2
+

1
√

2

∣0,1⟩ − ∣1,0⟩
√

2
↦

1
√

2
∣1⟩J ⊗ ∣0⟩M ⊗ ∣++⟩P +

1
√

2
∣0⟩J ⊗ ∣0⟩M ⊗ ∣+−⟩P ,

∣1,0⟩X =
1

√
2

∣0,1⟩ + ∣1,0⟩
√

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈Sym2(C2)

−
1

√
2

∣0,1⟩ − ∣1,0⟩
√

2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈⋀2(C2)

↦
1

√
2
∣1⟩J ⊗ ∣0⟩M ⊗ ∣++⟩P −

1
√

2
∣0⟩J ⊗ ∣0⟩M ⊗ ∣+−⟩P .

Exercise. Can you write down the Schur transform for n = 3?
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PHYSICS 491: Symmetry and Quantum Information April 9, 2017

Problem Set 1
Michael Walter, Stanford University due April 18, 2017

Problem 1.1 (Classical and quantum strategies for the GHZ game).
Three players and the referee play the GHZ game, following the same conventions as in class. In
particular, the referee chooses each of the four questions xyz with equal probability 1/4.

(a) Verify that the winning probability for a general quantum strategy, specified in terms of a state
∣ψ⟩ABC and observables Ax,By,Cz, is given by

pwin,q =
1

2
+

1

8
⟨ψABC ∣A0 ⊗B0 ⊗C0 −A1 ⊗B1 ⊗C0 −A1 ⊗B0 ⊗C1 −A0 ⊗B1 ⊗C1∣ψABC⟩ . (1.1)

(b) Suppose that Alice, Bob, and Charlie play the following randomized classical strategy: When
they meet before the game is started, they flip a biased coin. Let π denote the probability
that the coin comes up heads. Depending on the outcome of the coin flip, which we denote by
λ ∈ {heads,tails}, they use one of two possible deterministic strategies aλ(x), bλ(y), cλ(z) to
play the game. Find a formula analogous to (1.1) for the winning probability pwin,cl of their
strategy.

(c) In class we argued that even randomized classical strategies cannot do better than pwin,cl ≤ 3/4.
Verify this explicitly using the formula you derived in (b).

(d) Any classical strategy can be realized by a quantum strategy. Show this explicitly for the
randomized classical strategy described in (b) by constructing a quantum state ∣ψ⟩ABC and
observables Ax,By,Cz such that pwin,cl = pwin,q.

Problem 1.2 (Distinguishing quantum states).
The trace distance between two quantum states ∣φ⟩ and ∣ψ⟩ is defined by

T (φ,ψ) = max
0≤Q≤1

⟨φ∣Q∣φ⟩ − ⟨ψ∣Q∣ψ⟩ . (1.2)

Here, 0 ≤ Q ≤ 1 means that both Q and 1 −Q are positive semidefinite operators.

(a) Imagine a quantum source that emits ∣φ⟩ or ∣ψ⟩ with probability 1/2 each. Show that the optimal
probability of identifying the true state by a POVM measurement is given by

1

2
+

1

2
T (φ,ψ).

Why can this probability never be smaller than 1/2?

(b) Conclude that only orthogonal states (i.e., ⟨φ∣ψ⟩ = 0) can be distinguished perfectly.

(c) Show that the trace distance is a metric. That is, verify that T (φ,ψ) = 0 if and only if ∣φ⟩ = eiθ ∣ψ⟩,
that T (φ,ψ) = T (ψ,φ), and prove the triangle inequality T (φ,ψ) ≤ T (φ,χ) + T (χ,ψ).
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You will now derive an explicit formula for the trace distance. For this, consider the spectral
decomposition ∆ = ∑i λi ∣ei⟩ ⟨ei∣ of the Hermitian operator ∆ = ∣φ⟩ ⟨φ∣ − ∣ψ⟩ ⟨ψ∣.

(d) Show that the operator Q = ∑λi>0 ∣ei⟩ ⟨ei∣ achieves the maximum in (1.2), and deduce the
following formulas for the trace distance:

T (φ,ψ) = ∑
λi>0

λi =
1

2
∑
i

∣λi∣.

(e) Conclude that the optimal probability of distinguishing the two states in (a) remains unchanged
if we restrict to projective measurements.

In class, we used another measure to compare quantum states, namely their overlap ∣⟨φ∣ψ⟩∣.

(f) Show that trace distance and overlap are related by the following formula:

T (φ,ψ) =
√

1 − ∣⟨φ∣ψ⟩∣2.

Hint: Argue that it suffices to verify this formula for two pure states of a qubit, with one of them
equal to ∣0⟩, and use the formula derived in part (d).

This exercise shows that states with overlap close to one are almost indinguishable by any measure-
ment, justifying our intuition from class.

Problem 1.3 (POVMs can outperform projective measurements; Nielsen & Chuang §2.2.6).
Imagine a qubit source that emits either of the two states ∣0⟩ and ∣+⟩ = (∣0⟩ + ∣1⟩)/

√
2 with equal

probability 1/2. Your task is to design a measurement scheme that allows to optimally distinguish
these two cases. Unfortunately, the states ∣0⟩ and ∣+⟩ are not orthogonal, so you know that this
cannot be done perfectly (e.g., from the previous problem).

Suppose now that your measurement scheme is not allowed to ever give a wrong answer ! Instead,
it is allowed to report one of three possible answers: that the true state is ∣0⟩, that the true state is
∣+⟩, or that the measurement outcome is inconclusive. We define the success probability of such a
scheme as the probability that you identify the true state correctly.

(a) Show that for projective measurements the success probability is at most 1/4.

(b) Find a POVM measurement that achieves a success probability strictly larger than 1/4.

Bonus Problem 1.4 (POVM measurements are physical).
In this exercise, you will show that every POVM measurement can be realized by a projective
measurement on a larger system. Thus, let {Qx}x∈Ω be an arbitrary POVM measurement on some
Hilbert space HA. For simplicity, we will assume that the set of possible outcomes Ω is finite.

(a) Let HB be a Hilbert space space with one basis vector ∣x⟩B for each x ∈ Ω, and fix some arbitrary
x0 ∈ Ω. Show that the linear map

∣ψ⟩A ⊗ ∣x0⟩B ↦∑
x

√
Qx ∣ψ⟩A ⊗ ∣x⟩B (1.3)

is an isometry (an isometry is a map that preserves inner products).2

2Every positive semidefinite operator such as Qx has a square root
√
Qx, defined by taking the square root of each

eigenvalue while keeping the same eigenspaces.

90



Any isometry from a subspace into a larger Hilbert space can be extended to a unitary operator on
the larger space. Thus there exists a unitary UAB on HA ⊗HB that extends the isometry (1.3).

(b) Use UAB to design a projective measurement {PAB,x} on the joint system HA ⊗HB such that

Qx = (1A ⊗ ⟨x0∣B)PAB,x (1A ⊗ ∣x0⟩B)

for all outcomes x ∈ Ω.
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PHYSICS 491: Symmetry and Quantum Information April 16, 2017

Problem Set 2
Michael Walter, Stanford University due April 25, 2017

Problem 2.1 (Pure state entanglement).
In this exercise you will study the entanglement of pure states ∣ψ⟩AB ∈ HA ⊗ HB. In class, we
discussed the Schmidt decomposition

∣ψ⟩AB =
r

∑
i=1

si ∣ei⟩A ⊗ ∣fi⟩B

and its relation to the eigenvalues of the reduced density matrices. For simplicity we will assume
that dimHA = dimHB = d.

(a) We say that ∣ψ⟩AB is maximally entangled if si = 1√
d
for all i. Show that ∣ψ⟩AB is maximally

entangled if and only if ρA and ρB are maximally mixed (i.e., proportional to 1).

(b) Show that ∣ψ⟩AB is a product state if and only if ρA and ρB are pure states.

This suggests that the eigenvalues of the reduced density matrices ρA and ρB can be used to
characterize the entanglement of ∣ψ⟩AB. As an example, consider the Rényi-2 entropy, defined by

S2(A) = − log trρ2
A.

(c) Find a formula for S2(A) in terms of the eigenvalues of the reduced density matrices.

(d) Show that S2(A) = 0 for product states, S2(A) = log d for maximally entangled states, and
otherwise 0 < S2(A) < log d.

You will now study the average entanglement of pure states in HA ⊗HB , drawn at random from the
“uniform” probability distribution dψAB that you know from class.

(e) Let FA denote the swap operator on H⊗2
A that sends ∣a1, a2⟩ ↦ ∣a2, a1⟩. Verify that

trρ2
A = tr [(FA ⊗ 1BB) ∣ψ⟩⊗2

AB ⟨ψ∣⊗2
AB] .

(f) Let FB denote the swap operator on H⊗2
B , defined in the same way as FA. Show that

∫ dψAB ∣ψ⟩⊗2
AB ⟨ψ∣⊗2

AB =
1

d2(d2 + 1)
(1AA ⊗ 1BB + FA ⊗ FB) .

Hint: Remember the symmetric subspace.

(g) Show that the average Rényi-2 entropy S2(A) of a random pure state is no smaller than
log d − log 2.

Hint: Jensen’s inequality shows that ∫ dψ log f(∣ψ⟩) ≤ log (∫ dψ f(∣ψ⟩)).
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Problem 2.2 (Extensions of quantum states).
In this exercise you will verify two important facts that we discussed in class:

(a) Show that any density operator admits a purification. That is, given a quantum state ρA on
some Hilbert space HA, construct a pure state ∣ψ⟩AB ∈ HA ⊗HB, where HB is some auxiliary
Hilbert space, such that

ρA = trB [∣ψ⟩ ⟨ψ∣AB] .

Hint: Consider the spectral decomposition of ρA.

(b) Show that any extension of a pure state is a tensor product. That is, show that if ρA is pure
then any extension is of the form

ρAB = ρA ⊗ ρB.

Hint: You have already solved this problem in the case that ρAB is pure.

Problem 2.3 (The symmetric subspace is irreducible).
In this problem, you will show that the symmetric subspace is an irreducible representation of SU(d).
We will start with d = 2. For any operator M on C2, define a corresponding operator on (C2)⊗n by

M̃ =M1 +M2 + ⋅ ⋅ ⋅ +Mn.

Here we write M1 = M ⊗ 1 ⊗ . . . ⊗ 1, M2 = 1 ⊗M ⊗ 1 ⊗ . . . ⊗ 1, etc. Now consider an arbitrary
subspace H ⊆ Symn(C2) that is invariant for SU(2).

(a) Show that M̃ ∣ψ⟩ ∈ H for any vector ∣ψ⟩ ∈ H.

Hint: If H is Hermitian then eiH is unitary.

In class, we observed that the symmetric subspace has natural occupation number basis. For d = 2,
it is given by

∥t⟫ ∝ ∣0, . . . ,0
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

t

,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−t

⟩ + permutations (t = 0, . . . , n).

(b) Find an operator M such that M̃ has the basis vectors ∥t⟫ as eigenvectors (with distinct
eigenvalues). Conclude that H is spanned by a subset of the basis vectors ∥t⟫.

(c) Find operators M± such that M̃±∥t⟫ ∝ ∥t±1⟫. Conclude that H is either {0} or all of Symn(Cd).

Thus you have proved that Symn(C2) is indeed an irreducible representation of SU(2)!

(d) Any irreducible representation of SU(2) can be labeled by its spin j. What is the spin of the
symmetric subspace Symn(C2)?

(e) Optional: Sketch how your proof can be generalized to show that Symn(Cd) is an irreducible
representation of SU(d).
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Bonus Problem 2.4 (Entanglement witnesses and convexity).
An observable XAB on HA ⊗HB is called an entanglement witness for a quantum state ρAB if

tr[XAB ρAB] < 0,

while
tr[XAB σAB] ≥ 0 (2.1)

for all separable states σAB.

(a) Construct an entanglement witness for the maximally entangled state ∣Φ+⟩ = 1√
2
(∣00⟩ + ∣11⟩).

Hint: Compute the overlap of ∣Φ+⟩ with a pure product state ∣ψ⟩A ⊗ ∣φ⟩B. Why could this help?

(b) Argue that for any entangled state ρAB there exists an entanglement witness XAB.

Hint: You do not need to construct the entanglement witness explicitly.

Bonus Problem 2.5 (The extendibility hierarchy).
In this problem, you will show that any quantum state that has an n-extension is close to a separable
state if n is large, as discussed in class.

(a) Imitate the proof of the quantum de Finetti theorem given in class to show that, for any pure
state ∣Φ⟩AB1...Bn

∈ HA ⊗ Symn(HB),

trB2...Bn[∣Φ⟩ ⟨Φ∣] ≈ ∫ dψ p(ψ) ∣Wψ⟩ ⟨Wψ ∣A ⊗ ∣ψ⟩ ⟨ψ∣B1

for large n. Here, the integral is over the set of pure states on HB , p(ψ) is a probability density,
and the ∣Wψ⟩ are pure states in HA.

Now suppose that ρAB is an arbitrary quantum state that has an n-extension (i.e., that there exists
some σAB1...Bn such that σABk = ρAB for all k).

(b) Show that ρAB also has an n-extension ρAB1...Bn that is permutation-invariant on the B-systems,
i.e., [1A ⊗Rπ, ρ] = 0 for all π ∈ Sn.

Any n-extension as in (b) admits a purification in (HA ⊗HA′)⊗ Symn(HB ⊗HB′), where HA′ = HA
and HB′ = HB.

(c) Conclude that any n-extendible ρAB is close to a separable state for large n.

Hint: The trace distance does not increase when you take the partial trace.
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PHYSICS 491: Symmetry and Quantum Information April 23, 2017

Problem Set 3
Michael Walter, Stanford University due May 4, 2017

Problem 3.1 (The antisymmetric state).
In class, we discussed the quantum de Finetti theorem for the symmetric subspace. It asserts that
the reduced density matrices ρA1...Ak of a state on Symn(Cd) are

√
kd/(n − k) close in trace distance

to a separable state (in fact, to a mixture of tensor power states).
The goal of this exercise is to show that a dependence on the dimension d is unavoidable. To

start, consider the Slater determinant

∣S⟩A1...Ad
= ∣1⟩ ∧ ⋅ ⋅ ⋅ ∧ ∣d⟩ ∶=

√
1

d!
∑
π∈Sd

sign(π) ∣π(1)⟩ ⊗ . . .⊗ ∣π(d)⟩ ∈ (Cd)⊗d.

We define the antisymmetric state on Cd ⊗Cd by tracing out all but two subsystems,

ρA1A2 = trA3...Ad [∣S⟩ ⟨S∣] .

(a) Show that T (ρA1A2 , σA1A2) ≥
1
2 for all separable states σA1A2 .

Hint: Consider the POVM element Q = Π2 (i.e., the projector onto the symmetric subspace).

Thus you have shown that the antisymmetric state is far from any separable state. However, note
that ∣S⟩ is not in the symmetric subspace.

(b) Show that ∣S⟩⊗2
∈ Symd(Cd ⊗ Cd), while ρ⊗2 is likewise far away from any separable state.

Conclude that the quantum de Finetti theorem must have a dependence on the dimension d.

Problem 3.2 (De Finetti and mean field theory).
In this exercise you will explore the consequences of the quantum de Finetti theorem for mean field
theory. Consider an operator h on Cd ⊗Cd and the corresponding mean-field Hamiltonian

H =
1

n − 1
∑
i≠j
hi,j

on (Cd)⊗n, where each term hi,j acts by the operator h on subsystems i and j and by the identity
operator on the remaining subsystems (e.g., h1,2 = h⊗ 1

⊗(n−2)).

(a) Show that the eigenspaces of H are invariant subspaces for the action of the symmetric group.

Now assume that the ground space is nondegenerate, and spanned by some ∣E0⟩. Then part (a) implies
that Rπ ∣E0⟩ = χ(π) ∣E0⟩ for some function χ. This function necessarily satisfies χ(πτ) = χ(π)χ(τ).

(b) Show that χ(i↔ j) = χ(1↔ 2) for all i ≠ j. Conclude that ∣E0⟩ is either a symmetric tensor or
an antisymmetric tensor.

Hint: First show that χ(πτπ−1) = χ(τ).
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If n > d, then there exist no nonzero antisymmetric tensors. Thus, in the thermodynamic limit
of large n, the ground state ∣E0⟩ is in the symmetric subspace Symn(Cd) and so the quantum de
Finetti theorem is applicable.

(c) Show that, for large n, the energy density in the ground state can be well approximated by

E0

n
≈ min

∣ψ⟩
⟨ψ⊗2

∣h∣ψ⊗2
⟩ =

1

n
min
∣ψ⟩

⟨ψ⊗n∣H ∣ψ⊗n⟩ .

This justifies the folklore that “in the mean field limit the ground state has the form ∣ψ⟩⊗∞”.

Problem 3.3 (Universal quantum data compression).
In class, we discussed a quantum compression protocol that works for all qubit ensembles {px, ∣ψx⟩}
for which the associated density operator ρ = ∑x px ∣ψx⟩ ⟨ψx∣ has given eigenvalues {p,1 − p}.

Your task in this exercise is to design a universal compression protocol that works for all qubit
ensembles with S(ρ) < S0, where S0 > 0 is a given target compression rate.

(a) Show that, for all S0 > 0, there exist projectors P̃n on subspaces H̃n of (C2)⊗n such that:

(i) For all density operators ρ with S(ρ) < S0, tr [P̃nρ
⊗n] → 1 as n→∞,

(ii) The dimension of H̃n is at most 2n(S0+δ(n)) for some function δ with δ(n) → 0 as n→∞.

Hint: Use the spectrum estimation projectors Pj in a clever way.

(b) Use the projectors P̃n to construct a compression protocol with compression rate S0 that works
for all qubit ensembles with S(ρ) < S0 (i.e., show that in the limit of large block length n, the
average squared overlap between the original state and the decompressed state goes to one).

Hint: Follow the same construction as in lecture 7.

Bonus Problem 3.4 (Bounds on entropies).
In this exercise, you will prove two bounds that we used in class. Let 0 ≤ p, q ≤ 1. The first bound
concerns the binary entropy function h(p) = −p log p − (1 − p) log(1 − p).

(a) Consider the function η(x) = −x logx and assume that ∣p − q∣ ≤ 1
2 . Show that

∣η(p) − η(q)∣ ≤ η(∣p − q∣), (3.1)

and deduce the following special case of Fannes’ inequality :

∣h(p) − h(q)∣ ≤ 2η(∣p − q∣)

The second bound concerns the binary relative entropy δ(p∥q) = p log p
q + (1 − p) log 1−p

1−q .

(b) Derive the following special case of Pinsker’s inequality :

δ(p∥q) ≥
2

ln 2
(p − q)2.

Hint: Remember that logx = lnx/ ln 2 is the logarithm to the base two.
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Bonus Problem 3.5 (Schur-Weyl duality).
In class, we discussed an important mathematical result known as Schur-Weyl duality. The goal of
this exercise is to supply some last details and conclude its proof.

Recall that we decomposed the Hilbert space of n qubits as a representation of U(2). Using the
same notation as in class,

(C2
)
⊗n

≅⊕
j

Vn,j ⊗Cm(n,j),

such that, for all X ∈ U(2),
X⊗n

≅⊕
j

T
(n,j)
X ⊗ 1Cm(n,j) , (3.2)

and we discussed that this formula can be extended to arbitrary operators X on C2.

(a) Show that the representation operators Rπ for π ∈ Sn have the form

Rπ ≅⊕
j

1Vn,j ⊗R
(n,j)
π . (3.3)

Conclude that the operators R(n,j)
π turn the spaces Cm(n,j) into representations of Sn. We will

denote these representations by Wn,j .

Hint: Recall that [U⊗n,Rπ] = 0 and use Schur’s lemma.

In view of eqs. (3.2) and (3.3), we observe that [X⊗n,Rπ] = 0 for arbitrary operators X on C2 .

(b) Show that, conversely, any operator that commutes with all Rπ can be written as a linear
combination of operators of the form X⊗n.

Hint: Compute d
dt1

∣
t1=0

⋯ d
dtn

∣
tn=0

(∑
n
i=1 tiXi)

⊗n. Why does this help?

(c) Conclude that the representations Wn,j of Sn are irreducible and pairwise inequivalent.

Hint: Use Schur’s lemma.

You have thus proved the following result, known as Schur-Weyl duality : The decomposition

(C2
)
⊗n

≅⊕
j

Vn,j ⊗Wn,j

holds as a representation of both U(2) and Sn. The spaces Vn,j and Wn,j are pairwise inequivalent,
irreducible representations of U(2) and of Sn, respectively. This has important consequences. E.g.:

(d) Show that any operator that commutes with all U⊗n and Rπ is necessarily of the form ∑j zjPj ,
with zj ∈ C. Conclude that {Pj} is the most fine-grained projective measurement that has both
symmetries of the spectrum estimation problem, as discussed in class.

Hint: Use Schur’s lemma.
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PHYSICS 491: Symmetry and Quantum Information May 2, 2017

Problem Set 4
Michael Walter, Stanford University optional

Problem 4.1 (Schur-Weyl duality).
Your goal in this exercise is to concretely identify irreducible representations of U(2) and Sn in the
n-qubit Hilbert space. Let j be such that n

2 − j is a nonnegative integer.

(a) Show that the subspace

Hn,j ∶= {∣φ⟩ ⊗ ∣ψ−⟩⊗
n
2
−j
, ∣φ⟩ ∈ Sym2j

(C2
)} ⊆ (C2

)
⊗n

is an irreducible U(2)-representation equivalent to Vn,j . Here, ∣ψ−⟩ = 1√
2
(∣10⟩ − ∣01⟩) is the

singlet state. How can you obtain further U(2)-representations in (C2)⊗n equivalent to Vn,j?

(b) Now construct an irreducible Sn-representation in (C2)⊗n that is equivalent to Wn,j . How can
you obtain further Sn-representations in (C2)⊗n equivalent to Wn,j?

(c) Using part (b), confirm that the definition ofW andW via Schur-Weyl duality is equivalent

to our original definition in lecture 3.

Problem 4.2 (PPT criterion).
In this exercise, you will study a simple, highly useful entanglement criterion. Given an operator
MAB on HA ⊗HB, we define its partial transpose as the operator MTB

AB with matrix elements

⟨a, b∣MTB
AB ∣a′, b′⟩ = ⟨a, b′∣MAB ∣a′, b⟩ .

Note that this definition depends on the choice of basis for HB (but not of the basis for HA).

(a) Show that trMTB
AB = trMAB.

(b) Observe that if MAB =XA ⊗ YB then MTB
AB =XA ⊗ Y

T
B and argue that this uniquely determines

the partial transpose.

In particular, we can consider the partial transpose of a density operator ρAB.

(c) Show that if ρAB is separable then ρTBAB ≥ 0.

You thus obtain the so-called PPT criterion, short for positive partial transpose criterion: If the
partial transpose ρTBAB is not positive semidefinite then ρAB must be entangled.

(d) Verify using the PPT criterion that the ebit ∣Ψ+
2 ⟩ is entangled.

(e) Consider the family of isotropic two-qubit states,

ρAB(p) ∶= p τsym + (1 − p)τanti,

where τsym denotes the maximally mixed state on the symmetric subspace of two qubits and
τanti = ∣ψ−⟩ ⟨ψ−∣ the singlet state. For which values of p ∈ [0,1] does the PPT criterion establish
entanglement?
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In general, the PPT criterion is only a sufficient, but not a necessary criterion for entanglement. If
dimHA ⊗HB > 6, then there exist entangled states with a positive semidefinite partial transpose.

Problem 4.3 (Dual representations).
This problem introduces the concept of a dual representation. To start, consider a representation H
of some group G, with operators {Rg}. Let H∗ denote the dual Hilbert space, whose elements are
“bras” ⟨φ∣, and define operators R∗

g on H∗ by R∗
g ⟨φ∣ ∶= ⟨φ∣Rg−1 .

(a) Verify that the operators {R∗
g} turn H∗ into a representation of G. This representation is called

the dual representation of H.

(b) Show that if H is irreducible then H∗ is irreducible.

A representation H is called self-dual if H∗ ≅ H.

(c) Show that the irreducible representations of SU(2), and hence all its representations, are self-dual.

(d) Show that any representation of S3 is self-dual.

It is true more generally that any representation of Sn is self-dual.

Problem 4.4 (Many copies of a bipartite pure state).
In this exercise, we will revisit the universal entanglement concentration protocol discussed in
lecture 8. Let ∣φ⟩AB be an arbitrary state of two qubits. Then ∣φ⟩⊗nAB is a vector in the Hilbert space

(C2
)
⊗n

⊗ (C2
)
⊗n

≅
⎛

⎝
⊕
j

V A
n,j ⊗W

A
n,j

⎞

⎠
⊗

⎛

⎝
⊕
j′
V B
n,j′ ⊗W

B
n,j′

⎞

⎠
≅⊕
j,j′
V A
n,j ⊗ V

B
n,j′ ⊗W

A
n,j ⊗W

B
n,j′ .

The superscripts A refer to the Schur-Weyl decomposition of the n A-systems, and likewise for B.
Now consider the representation of Sn on WA

n,j ⊗W
B
n,j′ given by the operators R(n,j)

π ⊗R
(n,j′)
π . A

vector in WA
n,j ⊗W

B
n,j′ is called an invariant vector if it is left unchanged by all these operators.

(a) Show that if j ≠ j′ then WA
n,j ⊗W

B
n,j′ contains no nonzero invariant vector for Sn.

(b) Show that WA
n,j ⊗W

B
n,j contains a unique invariant vector (up to scalar multiples). Moreover,

show that this vector is a maximally entangled state, which we denote by ∣Φ+⟩WA
n,jW

B
n,j

.

Hint: Use problem 4.3 and Schur’s lemma.

(c) Conclude that ∣ψ⟩⊗nAB can be written in the form

∣ψ⟩⊗nAB ≅ ∑
j

√
pj ∣Ψ⟩V An,jV

B
n,j

⊗ ∣Φ+
⟩WA

n,jW
B
n,j
,

where pj = tr[Pjρ
⊗n
A ] and where the ∣Ψ⟩V An,jV

B
n,j

are suitable pure states in V A
n,j ⊗ V

B
n,j .

(d) Use part (c) to analyze the universal entanglement concentration protocol discussed in class.

Problem 4.5 (The controlled swap gate).
In this exercise, you will decompose the controlled swap (CSWAP) gate into a quantum circuit that
consists of single-qubit and two-qubit gates only.
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(a) Compute the three-qubit unitary that corresponds to the following quantum circuit:

● ● ●

● ●

H V V † V H

Here, V = ( 1
i ) is a square root of the Z-gate.

The unitary from part (a) is known as the Toffoli gate.

(b) Show that the controlled swap gate can be implemented by a sequence of Toffoli gates.
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