PHYSICS 491: Symmetry and Quantum Information April 27, 2017

Compression and entanglement, entanglement transformations
Lecture 8 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Today we will discuss some entanglement theory of bipartite pure states (i.e., pure states 1)) 45
with two subsystems). First, we will solve the problem of compressing subsystems of entangled states.
Then we study transformations between pure states in order to compare them in their entanglement.

8.1 Compression and entanglement

Density operator do not only arise when describing statistical ensembles, but also when describing
subsystems of entangled states. This suggests a second kind of quantum compression task (Schu-
macher}, [1995): Given many copies of a bipartite pure state, |1/1)§%, we would like to send over the
B-systems to Bob by first compressing the B-systems, sending over a minimal number of qubits,
and decompressing at Bob’s side (fig. . Thus, if |1/~J) Anpn 18 the state after compression and
decompression, we would like that

() angn ~ [0 35

(say, on average).

We can achieve this using the same protocol as before — but this time applied to the B-systems
only. Let us accordingly write Pgn for the typical projector defined in terms of the eigenvalues
{p,1-p} of pg=tra[[¥) (Y| 45], and Hpn € (C?)®". Then the protocol reads as follows:

e Measure the observable Pgn.

e If the outcome is 1, then the post-measurement state lives in (C?)®" ® Hpn. We send over the
B-systems using roughly n(S(p) + ) qubits.

e If the outcome is 0, send over some arbitrary state (or simply fail).

(P> =
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Figure 11: Alice wants to send half of her entangled states |¢)§% over to Bob at transmission rate R.
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The probability that the measurement Pgn yields outcome 1 is given by
q:= (V551 an ® Ppa|Y§h) = tr[p%" Ppn | — 1.
In this case, the post-measurement state is

(14n ® Pgn) [tpap)®"

V4

and its squared overlap with the original state is

1 ~ q2
a|<¢)§%|ﬂA" ® Ppn[y§p)|* = s q—1

It follows that the average overlap is at least
El(¢Spldanpn)* 2 ¢* — 1.

Thus we have solved the problem of sending over half of an entangled state: Our compression
protocol works at an asymptotic rate of S(p) + & qubits. Again, it turns out that this rate is optimal
— we will be able to prove this next time in lecture [

We thus obtain a second operational interpretation of the von Neumann entropy: When applied
to the reduced density matrix pp of a bipartite pure state, it is the minimal rate of qubits required
to send over the B-systems of many copies of the state from Alice to Bob. This is very intuitive and
in line with our discussions in section and problem 2.1} For pure states, the mixedness of the
reduced density operators is a signature of entanglement. The more entanglement there is in |¢) 4 5
the more qubits we need to send over to Bob in order to create this state between Alice and Bob.
This gives a good justification why in the literature the expression

Se(¥ap) =5S(pa) = S(pB) (8.1)

is often called the entanglement entropy of the bipartite pure state [1) 4 5.

Example. If [¢) 45 =10) 4 ® |0) 5 then we do not need to send any quantum information — we can
simply prepare the state [0) on Bob’s end. If ) 45 = % (100) 45 +11) 4 5) is a mazimally entangled
state then we cannot compress the B-systems at all and need to send a rate of Sg = 1.

The task that we just solved could be more aptly called “quantum state transfer”, since we seek
to transfer the state of the B-systems over to Bob while preserving all correlations with the purifying
A-systems (sadly, this term is usually used with a different connotation). It is a special case of the
more general problem of quantum state merging, where the receiver already possesses part of the
state — we will have a peek at this next week.

Remark. Again, note that our protocol only depended on the eigenvalues of pp (equivalently, of
pa). The same modification discussed in pmblem allows us to build a universal protocol at fixed
rate So that works for all states whose entanglement entropy is bounded by Sg < Sp.

Remark. [t is possible to show that the task of sending over half of a mazimally entangled state at
minimal qubit cost is a more difficult problem than the compression of quantum sources in the sense
that whenever we have a protocol for the former we can use it to compress arbitrary quantum sources
with associated density operator pp.
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8.2 Entanglement transformations

Let us talk some more about entanglement. For pure states, [¢) 45 # [¢) 4 ® [¢) 5 means that the
state is entangled. But how can be compare and quantify different states in their entanglement? One
approach is to assign to each state some arbitrary numbers that we believe reflect aspects of their
entanglement properties — e.g., the entanglement entropy Sg from eq. , the Rényi entropy from
problem or simply the collection of all eigenvalues of pg or pp. Yet, this might seem somewhat
ad hoc and so is not completely satisfactory.

A more operational approach would be to compare two states |¢) 45 and [¢) 45 by studying
whether one can be transformed into the other: What family of operations should we consider in
such a transformation? Since our goal is compare entanglement, we should only allow for operations
that cannot create entanglement from unentangled states. We already briefly mentioned such a
family when we discussed mixed-state entanglement in section It is LOCC, short for Local
Operations and Classical Communication. Here, we imagine that Alice and Bob each have their
separate laboratory.

e Local operations refers to arbitrary quantum operations that can be done on Alice’ and Bob’s
subsystems. We allow any combination of unitaries, adding auxiliary systems, performing
partial traces, and measurements.

e (Classical communication refers to Alice and Bob’s ability to exchange measurement outcomes.
Thus, Bob’s local operations can depend on Alice’s previous measurement outcomes, and vice
versa.

Thus we are interested to study whether

Lrocc
WV)ap — |9l ap-

If yes, then we could say that [¢) , 5 is at least as entangled as |¢) 45 — indeed, the former is as useful
as the latter for any nonlocal quantum information processing task, since we can always convert
1) 4 into |@) 45 When required.

Remark. Note that the setup here is very different from quantum data compression — there, we
wanted to minimize the amount of quantum communication sent. Here, we do not allow any quantum
commaunication.

Example 8.1. Consider the EPR pair or ebit |®3) = %(|00) +[11)), as well as its generalization,

the maximally entangled state in d-dimensions
1B5) = = S Jid)
Vd G

It is intuitive and also true that Loce

[@3) — |2g)
if and only if d > d'. The “if” is only obvious if d = 2" and d' = 2",, since in this case the transformation
can simply be achieved by tracing out n—n' of the qubit. For the “only if”, one can argue that the
number of terms in the Schmidt decomposition, which is d for |®}), can never increase under LOCC.

We will not prove this in class, but you may verify both claims in problem [{.3.
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Howewver, it might be instructive to see concretely how the conversion |®%) — |®3) can be achieved,
since the general case can be proved completely analogously. The trick is to note that, while
@) = —= (1) +[22) +[33)),
V3

we can also write
1

V3

where Ug is some unitary on B. Here, the |1b;) € C? are normalized but non-orthogonal states
such that %Zi Vi) (i = %Z?zl i) (i| (!). For example, you can use the three states constructed in

example [2.]

Alice and Bob can now apply the following LOCC protocol: First, Alice applies the isometry

[@3) = (Ta® Up)—= ([91) [1) + [¢2) [2) + [v)3) [3)) (8.2)

‘ 1 P
i) 4 = |di) 4 ® ﬁ;fﬂ] 17) 47 5

where w = €23 is a primitive third root of unity (as in problem this can be realized by adding
an auziliary system and performing a unitary). The second system is necessary to ensure that this
is indeed an isometry (recall that the |¢;) 4 alone are not orthogonal). When applied to |®3), the
resulting state is

1 y , .
3 > wlgi) 4 @15 a ® i)
i?j

Alice now measures her auxiliary A’ system in the standard basis. The probability of each outcome is
1/3. After discarding A, the corresponding post-measurement state si

1 y
ﬁ ZW” lpi)a ® i) -

This almost looks as desired — except for the phases. To get rid of them, Alice sends j over to Bob,
and Bob applies the diagonal unitary i)z — w™ |i) 5. We obtain

%;m@m.

At last, Bob applies to unitary Ug. Thus, Alice and Bob have obtained eq. (8.2) — done!

The theory of exact interconversion is solved for bipartite pure states. However, there are many
parameters — the entire spectrum of p4 and pp matters (Nielsen, (1999, Nielsen and Vidal, |2001). It
turns out that the asymptotic theory simplifies tremendouly, and we will discuss this now. The key
idea is that instead of converting many copies of two arbitrary states into each other, we will study
the conversion into (and from) a common resource or “currency” of entanglement. This common

resource is the mazimally entangled state or ebit |®3) = LQ (J00) + [11)).
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8.3 Entanglement concentration

The first problem that we want to study is the following: Given many copies of a state |t)) 45, convert
them by LOCC into as many ebits as possible:

Locc R
) ap — ~ [@3)°"

Just as in the case of data compression, we are interested in the maximal rate R that can be
achieved with error going to zero for n — oo (or rather its supremum). This is called the distillable
entanglement Ep(1) of the state |¢) 4 5.

For example, Ep(|¢*)) =1 and, more generally, Ep(|®})) =logd (cf. example . Instead of
proving directly, we will consider the general case right away.

We will approach this problem by first focusing on Alice’ Hilbert space,

(C?)®n EBVA e WA

TLJ’

where the superscripts indicate that we refer to Alice. If we write p4 = trp [[¢) (¢| 45], then
pA = @Tp(:f’]) ®lya = @pjpvfj ®Twa -
J ' J ' '

On the right-hand side, we have written each direct summand as a probability (p;) times a tensor
product of density operators — this is possible since the direct summands are positive semidefinite.
Note that p; is nothing but the probability of obtaining outcome j when measuring P; on Alice’s
qubits, and recall that Twa = IlWA /m(n,j) was our notation for a maximally mixed state. Now

suppose that Alice does 1ndeed perform the measurement P; on her qubits and receives outcome j.
Then her post-measurement state is py,a ® T4 . What does the overall post-measurement state
n,Jj n,J

look like? Let us first guess a purification. We can purify p;,4 to some arbitrary |1/~1)VA_VB_, and

n,J n,3  M,J
Twa, to the maximally entangled state |®* )WA WE, - Hence, a purification of her post-measurement
states looks like

W)an‘ljvfJ ® [P >WA wp, € (VA ®V, j) ® (erj ® WTEJ)
= (Vi e W) e (VB ew?r)c(C)® e (C?)"

We now use an important result that we have not met before: Any two purifications of a quantum
state are related by a unitary on the auziliary Hilbert space. In the present context, this means that
the post-measurement state is precisely equal to

Lan ® Upn) (i o+
(1an ®Us )(|w>mfjvn§j®| )W;?’],Wf’j)a

where Upn is some unitary acting on Bob’s Hilbert space. If Bob applies U Tn and both parties
discard their V,, j-systems, they arrive at the maximally entangled state

‘qﬁ)wf’jwyﬁj ’
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But with high probability, 7 will be such this is a maximally entangled state of dimension no smaller
than 27(5(P4)=9) ~ According to example we can convert this into [n(S(pa) —d)| ebits.

Thus we find that using the preceding entanglement concentration protocol, which is completely
universal, we can distill entanglement at rates arbitrary close to the entanglement entropy Sg(v) =
S(pa). In other words:

Ep(¢) 2 Sp()

Remark. Since [1)%y is in the symmetric subspace Sym™(C? ® C?), we can identify the mazimally
entangled state much more precisely by using representation theory. This avoids the need to appeal to
Uhlmann’s theorem and makes the protocol quite a bit more concrete. You are welcome pursue this
idea in problem [{.3

Is this rate optimal? Yes — we will show this next time using a “thermodynamics argument”.

e First, we will study the reverse transformation (i.e., from perfects ebits to copies of 1)) 45).
We will show that the minimal rate of ebits required, known as the entanglement cost Ec(1)),
is no more than Sg(v).

e We can thus consider the “cyclic process” starting and ending at ebits:

?Ec(w)nadj@n _)¢§ED(R)

e Necessarily, Ec (1) > Ep(1), because otherwise we could create ebits from nothing! Why is
this not possible? See example above for the exact case; the approximate case follows
similarly by tracking epsilons and deltas, as you may show in problem .2

e By combing all results, we will find that Sg(v) > Ec(v) > Ep(v) > Sg(¢) so they are all
equal:

Se() = Ec(¥) = Ep(¥)

This is the main result of the bipartite entanglement of pure states, and it gives us two new operational
interpretations of the von Neumann entropy which justify its use as an entanglemen measure for
pure states: The von Neumann entropy measures the maximal rate at which ebits can distilled from
many copies of a state [¢) ,5, as well as the minimal rate of ebits required to produce many copies
of |¢) 45 (up to arbitrarily high fidelity).

More generally, if we have two states [¢)) 45 and |¢) 45 then we can convert the former into
the latter by LOCC at optimal rate Sg(1)/Sg(¢$) — this is a satisfyingly simple resolution of the
question that we set out to solve.

Discussion

Let us close with two remarks. First, the approach that we pursued above to study entanglement
transformations was rooted in the idea of the ebit as a resource. This idea of setting up resource
theories to compare different quantum states in their relative strength for certain tasks has been
quite fruitful in quantum information theory, and there are many further examples (e.g., in quantum
thermodynamics).

Second, you might wonder how the above story generalizes to mixed states pap. It turns out
that in this case the entanglement theory is much more complicated. We already saw hints of this
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in section when we discussed that even deciding whether a given state pap is separable is in
general an NP-hard problem. In addition, while the same definitions can be made as above, there
are many new phenomena. For example, in general we have that Ec(p) > Ep(p), meaning that
the conversion via ebits is in general asymptotically irreversible! In fact, there are entangled mixed
states states such that Ec(p) > 0 while Ep(p) = 0. We call them bound entangled states — these
states are entangled but no ebits can be distilled from them at a positive rate.

Relatedly (because every mixed state pap can be purified to a tripartite pure states [1)) 4 5) the
entanglement of pure states with more than two subsystems is similarly complicated.
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