PHYSICS 491: Symmetry and Quantum Information April 25, 2017

Schur-Weyl duality, quantum data compression, tomography
Lecture 7 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Today, we will summarize the “Schur-Weyl toolbox” that we developed in lecture [6] to solve
the spectrum estimation problem. We will then apply it to the task of compressing a quantum
information source.

7.1 The Schur-Weyl toolbox

Let us recapitulate the machinary that we developed to solve the spectrum estimation problem. Just
like any representation of SU(2), the Hilbert space of n qubits can be decomposed in the form

(C)*r =PV eCm™),
J

Last time, we discussed that the action of SU(2) could be extended first to SL(2) and then to
arbitrary operators on C2: In eq. 1 , we found that

X®n ~ @T)({nd) ® ]l(cm(n,j)y
J

where

(n.j) _ n/2 rp(5)
Ty = (det X) TX/\/m

is a polynomial in the matrix elements of X and hence makes sense for arbitrary X. You can verify
this, e.g., by using the symmetric subspace model of the spin-j representation. In particular, this
formula applies to unitary matrices U. It follows that the operators T[(Jn’] ) define a representation of
the unitary group U(2), which we will denote by V,, ;. Here, j tells us the spin of the representation
when restricted to matrices in SU(2), and n reminds us of the way that multiples alc2 of the
identity matrix act by a™. Since every unitary can be written as aU with a # 0 and U € SU(2),
this information specifies the representation completely. It is clear that the representations V;, ; are
irreducible, since they are even irreducible for the subgroup SU(2).

We can also consider (C?)®" as a representation of the symmetric group S,. Since [R,,U®"] =0,
Schur’s lemma (lemma implies that

R, 2 @1y,, ® RI™D
J

for some operators Rﬁr”’j ) on C™(™3) S0 far, the Hilbert spaces C"™(™7) were simply vectors spaces —
but now we see that the operators R&”’J ) turn them into representations of S,,. We will denote these
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representations by W, ;. The representations W, ; are irreducible and pairwise inequivalent. You
will verify this and the following statements in problem
Thus, we have the following decomposition of the Hilbert space of n qubits:

(C2)®n = @Vn’j ® anj (71)

which holds as a representation of both U(2) and S,, (equivalently, of the product group U(2) x S,,).
The spaces {V,, j} and {W,, ;} are pairwise inequivalent, irreducible representations of U(2) and of
Sh, respectively. Equation shows that they are “paired up” perfectly in the n-qubit Hilbert
space. This result is known as Schur- Weyl duality, and it has a number of important consequences.

For example, any operator that commutes with all U®" is necessarily a linear combination of the
operators R;. Dually, any operator that commutes with all R, is necessarily a linear combination of
operators of the form X®" (even U®"). Mathematically, we say that the two representations span
each other’s commutants. Schur-Weyl duality also implies that the projectors

Pj = @5]"]-/]1
]l

not only have both symmetries of the spectrum estimation problem (i.e., that they commute with
both the U®™ and the R;), but that they are in fact the most fine-grained projective measurement
with this property.

Table [T] assembles all important facts and formulas about the representation theory of the n-qubit
Hilbert space that we obtained past week (the “Schur-Weyl toolbox”). It contains one formula,
eq. ([7.5)), which is proved just like eq. . We will use it to solve the quantum state tomography
problem in section below.

Remark 7.1. So far, we have simply argued on abstract grounds that the Hilbert space of n qubits can
be decomposed in the form . Here, the notation 2 means that there exists a unitary intertwiner
from the left-hand side to the right-hand side. But if we want to implement, e.g., spectrum estimation
in practice, we need to know what this unitary operator looks like. In other words, we need to find a
unitary operator that implements the transformation from the product basis

|T1, .. xn) = |21) ® ... ® |xy)

to the Schur- Weyl basis
1. m, k)

n

where je{...,5-1,5}, me{~j,...,j}, ke{l,...,m(n,j)}. Note that the right-hand side is not a
tensor product of three spaces, because the allowed values for m and k depend on j. However, we can
embed it into a larger space where |j,m, k) = |j) ® [m) ® |k) is a product basis vector. In lecture[1(
we will learn how to tmplement this transformation — called the quantum Schur transform — by a
quantum circuit.

Beyond qubits

How does the preceding generalize beyond qubits? This is best explained by making a simple
coordinate change and instead of by (n,j) parametrizing all representations by

A= Q) = (5 455 -d) e 22
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We can identify A with a so-called Young diagram with two rows, where we place A; boxes in the
first and Ao boxes in the second row. E.g.,

A= (7,3) = IO

We always demand that A; > Ao, corresponding to j > 0. Note that the total number of boxes is
A1+ Ao =n, while 25 = Ay — Ao is the difference of row lengths.
If we write V) :=V}, ; and W), := W, ;, then the Schur-Weyl duality (7.1]) becomes

((C2)®n = 6}\9 Vi@ Wy, (72)

where we sum over all Young diagrams with n boxes and at most two rows.

Remark 7.2. In example we already met the irreducible representations of S3 and labeled them
by Young diagrams. The representations W17 and Wi that occur in (C?)®3 are precisely the

ones that we already met in example[3.1. You will verify this in problem [{.1]
On the other hand, because the antisymmetric subspace N> C? = {0} is zero-dimensional, the sign
representation W@ does not appear at all.

The notation A is quite suggestive. Indeed, let us define the normalization of a Young diagram A
by A=M\/n=(A1/n,\a/n), where n = A\; + A\y. This is a probability distribution, and
UL I AP R
AM==-+==pD, A=--==1-p.
1=57 p 2757, p
Thus, spectrum estimation can be rephrased as follows: When we measure {Py} on p®" and the
outcome is A, then A is a good estimate for the spectrum of p.
The key point now is the following: eq. (7.2)) generalizes quite directly from qubits to arbitrary
d. This is because the irreducible representations of U(d) are labeled by Young diagrams with (at
most) d rows, while the irreps of \S,, are labeled by Young diagrams with n boxes. See, e.g., Harrow
(2005), |Christandl (2006), Walter| (2014) for further detail.

7.2 Quantum data compression

We will now discuss quantum data compression in more precise terms (Schumacher} |1995). We
consider a quantum information source described by an ensemble {p,, |¢;)} of qubit pure states. It
emits sequences
[(2)) = [he) ® ... ® [, ) € (C)®"
with probabilities
P(Z) = Pay - - - Pay,-

The task of quantum data compression is to design an compressor that encodes a sequence
[(#)) € (C*)®™ into some state of Rn qubits and a corresponding decompressor — R is called the
compression rate at block length n. Unlike the state of a coin, we cannot in general hope to precisely

recover the original state. Instead, the decompressor should produce a state [¢)(Z)) that has high
overlap with the original state (say, on average):

> p(@) B[ (@)l(@)P] ~ 1. (7.6)
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Schur-Weyl duality:

((CQ)@n = @ Vn,j ® Wn,j,

: n n
J=ng-1L5

en ~ (n.4) (nog) ._ n/2 ()
X :?TX ® lw,,, where Ty :=(detX) TX/\/M’

R.=@1y,, ® RI™D.
J

Vn; and W, ; are pairwise inequivalent, irreducible representations of U(2) and Sy, respectively.
Dimensions:

dimV,,;=2j+1<n+1,

N | —
+
SEES
—
-~
w
S—

dim W, j =m(n,j) < "B where p=

Estimates:
27"[h(i’)+5(ﬁ”p)] < tr [Té"’j)] < (2j+1)27"[h(ﬁ)+6(ﬁ”p)] where p has eigenvalues {p,1-p}, (7.4)

More generally, if X >0 and k > 0:

n,j -n p ||z n X .
tr [T)((,f)] <(25+1)2 k[h(p)+5(p“ )] (tr X)*,  where e has eigenvalues {z,1-x}. (7.5)

Spectrum estimation:
Pi=@djjlv,,; ® lw,,;,
]/
® ~ 7‘ J—
po" e @Tp(’”) ® 1y, =@Ppjpv,, ® 1w,
J J
and so

py = tr [P < (n + 1)227780I0) < (5 4 1)29 05850
tr [ﬁnp‘gm] >1-(n+ 1)227"%52

where B, := 2 ji|p-pl<e Tj 1s the projector onto the “e-spectrum typical subspace” of p.

Table 1: The Schur-Weyl toolbox for i.i.d. quantum information theory (in the case of qubits).
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Figure 10: Hlustration of the compression of a quantum information source.

The average value E[...] refers to the fact that the decompressed state [¢)(z)) for a given [i(Z)) is
typically random. How should we go about solving this problem?

At the end of last lecture, we constructed, for every p € [%, 1] and € > 0, projectors P, = Y jip-pl<e L
onto a subspace H, of (C?)®" such that

dlm/]:[n < (n + 1)2271}1(1))+6(&)7

and

tr [Pnp®"] -1 (7.7)

for all density operators p with eigenvalues {p,1 - p} (cf. table .

What is the density operator p that we should care about? Every ensemble gives rise to a density
operator p = Y., P |z) (2|, describing the average state emitted by the qubit source (we discussed
this in lecture (3)).

Remark. The states |1p,) emitted by the source do not have to be orthogonal. Thus, the eigenvalues

{p,1-p} of p used to construct P, are not in general the same as the probabilities p, of the ensemble.
: 1 : 1 1

E.g., in problem you computed that 5 (|1) (1] +[=) (=|) has eigenvalues 5 + OV

This suggests the following two-step quantum data compression protocol that is completely
analogous to the way by which we compressed sequences of coin flips in section [5.1

e Alice measures the observable P, (i.e., she performs the projective measurement {P,,1 - P,}).

e If the outcome is 1, then the post-measurement state

G
B ()]

€ H,
lives in the subspace H only. Thus, Alice can send this state over to Bob by transmitting
roughly n(h(p) + ) qubits.

e If the outcome is 0, she simply sends over some fixed state. (Alternatively, she might signal
failure — as in our coin flip protocol.)

Bob then uses the sent-over state in H ¢ (C?)®" as the decompressed state. For large n, this protocol
achieves a quantum compression rate of roughly R = h(p) + 9.

Remark. As discussed in class, in order to be able to “send over” the post-measurement state
we first need to identify the subspace H with N ~ n(h(p) + ) many qubits. For example, Alice
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could first apply a unitary U that maps the subspace H into the subspace of states of the form
) ayay ®10) a4y, ®---®[0),, . Alice would then send over the first N of her qubits. Upon

receiving those, Bob would apply U to obtain the decompressed sate. Mathematically, this is not
very interesting, but physically this is quite important because we usually do not get to choose our
physical qubits!

Let us analyze the average fidelity achieved by our compression protocol. If the input state
is [4)(#)) then according to the Born rule the measurement of the observable P, yields outcome 1
with probability 3
q(%) = (P (2)|Palp(2)) -

As already mentioned above, the post-measurement state in this case is

Polip(2)) _ Pal$(3))
[Pnlp@EN Va(Z)

and so this is the state [¢)(#)) that Bob obtains at his end. Thus, eq. (7.6) can be bounded as follows:

I W)(fﬂ)
\/Q(:v)

> 0(@) E[[{o(@) ()] > Zp(x)Q(x)! (@) ——==— Zp(x)lw(w)lp [ (2))[

- 0@ (oo q<f>)

The first inequality is because we lower bound the overlap in the case that the outcome is 0; the
second inequality is Jensen’s inequality that we already used previously in class. But now note that

S () a(e) = £o(@) a[@) @I B =1n|(Zo@) W) @) 22| 1272y 1

by eq. . Thus, our compression protocol will successfully compress a quantum information
source with associated density operator p at rate h(p) + . We can make ¢ > 0 arbitrarily small by
choosing ¢ > 0 smaller and smaller (note, however, that this requires the block length n to increase).
This compression rate turns out to be optimal, as we will find in lecture [9]

This motivates us to define the von Neumann entropy of a density operator p as

S(p) =-trplogp.

For qubits, S(p) = h(p), as you can verify by expanding the trace in the eigenbasis of p. Thus, the
von Neumann entropy that you might already know from your quantum physics research has a well-
defined operational interpretation: It is the optimal compression rate of any quantum information
source with associated density operator p. This is in complete analogy to one of the many roles
played by the Shannon entropy in classical information theory. Next time, we will discuss a number
of other meanings of the von Neumann entropy related to entanglement.

Remark. This emphasizes a fundamental idea in information theory: We often seek to find charac-
terizations of entropic quantities as optimal rates for information processing tasks. In the asymptotic
limit of n - oo, the von Neumann entropy plays a rather universal role. However, at finite block
lengths n < oo, there is not just one entropy but a whole zoo of entropic quantities that information
theorists are interested in, each targeted at different tasks (Faist, 2013).
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An interesting fact about our compression protocol is that the projectors P, depended only on
the eigenvalues p and 1 — p, not on the eigenbasis of the density operator p. Thus the compression
protocol designed above works for all qubit sources whose associated density operator has eigenvalues
{p,1-p}. On problem you will show that by a very simple extension of this idea one obtains
a truely universal quantum compression protocol: It is targeted at a fized compression rate Sy and
is able to compress an arbitrary qubit source whose density operator has entropy S(p) < Sp. This
universality is not automatic using the textbook approach to asymptotic quantum information
theory, and it is one of the main advantages of the Schur-Weyl toolbox introduced in section

7.3 Supplement: Quantum state tomography

Starting with our solution to the spectrum estimation problem, we can also solve the problem of
estimating an unknown quantum state from many copies — a task that is also known as quantum
state tomography. That is, given p®", we would like to design a POVM measurement that yields an
estimate p ~ p with high probability,

Pt —> pp.
We follow the approach of Haah et al.| (2015 (but see the original paper by Keyl (2006) and other
exciting recent works by |(O’Donnell and Wright| (2015, [2016])).

The POVM measurement

The general idea is that we would like to design a POVM measurement {Q; 7} with two outcomes j
and U, such that the estimate is

. (D i

p=U ( 1- ]5) U'.

As before, j is a discrete parameter that we will use for the eigenvalue estimate p = % + %7 while U is
a continuous parameter that rotates the diagonal matrix with eigenvalues {p,1 - p} into the proper
eigenbasis. In order for {Q;} to be a POVM, we need that Q; ¢ >0 as well as

Z f dU Qju = 1, (7.8)

where [ dU denotes the Haar measure of the unitary group U(2). This is the unique probability
measure on U(2) such that all expectation values are invariant under the substitution U +~ VUWT
for unitaries V', W. Moreover, we would like for the POVM {Q; 7{ to be a refinement of {P;}, so
that the j have the same meaning as before. That is, if we forget about the outcome U then we
would like to get the same statistics for j as if we performed the measurement {P;}. Mathematically,
this means that we would like to demand that

f dUQ; v = P; (7.9)

which clearly implies eq. (7.8)). What does such a POVM look like?
We will make the ansatz

N n
Qj,U oc Pjﬁ®nPj = PjU®n (p 1 —]3) UT’®nPj ~ T[Sm]) ® ]]‘Wn,j'
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To see that this is natural, we observe that, for j = 5, P; is the projector II,, onto the symmetric
subspace Sym"(C?). Moreover, p = 1, hence

p=U0) (0] UT =) (4],

and so
N ~®n , ~®n
Qn/2,U o< an®an = Wj) (¢|

is exactly the uniform POVM that we used for pure state estimation in lecture . Thus, our
POVM measurement @; is a true generalization of what we did for pure states — that’s already an
encouraging sign. Moreover, note that @ has permutation symmetry (i.e., [Rr,Q; ] =0) and it
is covariant with respect to the unitary group in the following sense: For all V € U(2),

tr[pQjul =tr [VeV'Qjvu],

where we note that estimate corresponding to the POVM element Q; vy is Vv, We could
summarize this as p — VpV1 ~ p Vvt

We will now show that eq. holds true by a suitable choice of normalization constant. For
this, we first note that

deQ],U > deT[f”’j)@nWw o P,

| —

°<]1Vn,j

as a consequence of Schur’s lemma. Indeed, the indicated operator is a self-intertwiner on the
irreducible representation V,, ;, because

(n.4) (n:3) Y (nag) _ p(nsd) (n23) p(n,5) (n.3) | o(n.5)
0 ([ dU T )TVT =1 (f dU T T(ﬁ )TUT )TVT
1-p
(w) (”:J) (n,4) (n23) p(n,5) (”:J) (n,J)
- [avr T )T(VU)T [ vt T( T - [
in the second to last step we used that the integral is invariant under the substitution U — VU. It

is now easy to figure out the correct normalization constant — we merely need to compare traces. On
the one hand, in view of the definition of @; s, its trace that does not depend on U, and so

tr [[ au Qj,U] =trQju =tr [Tpsn’j)] (dim W, ;)
for any U that we like. On the other hand,
tI‘Pj = (d1mVnJ)(d1mWn,]) = (2] + 1)(d1m Wn,j)-

Thus, the appropriately normalized POVM elements are

27+1
J+ Pﬁ@ﬂpj
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The fidelity between two quantum states

In section we discussed the trace distance T'(p,0) as a distance measure between quantum states
(whether pure or mixed). Another very useful measure was the overlap, [(¢|i)|, which we only
defined for pure states. The overlap also generalizes nicely to mixed states, but the expression is
more complicated: It is the following quantity, known as the fidelity:

F(p,0) =tr\/\/po\/p = tr\/\/op\/o

As in problem vV M denotes the square root of a positive semidefinite operator M, defined by
taking the square root of all eigenvalues. The fidelity might seem like a strange definition — but
actually it is precisely the maximal overlap that can be obtained between any two purifications.
That is,

F(p,o)= max [(¢paplaB)|

‘ )AB’| AB

where we optimize over all pure states |¢) 45, [¥) 45 such that trp [|@) (¢l 45] = p, tre[[¢) (Y|4g] =0
In particular, if p = |¢) (¢| and o = 1) (| are themselves pure then the fidelity agrees with the overlap.
(You can also check this explicitly from the definition, since in that case \/p = p and \/o =0.) In
general, the trace distance and fidelity are related by the Fuchs-van de Graaf inequalities:

1-F(p,0)<T(p,0)<\/1-F?(p,0) (7.10)

Analysis of the measurement

Similarly as when analyzing the spectrum estimation measurement, our goal is to show that
tr[Q;,up®"] is exponentially small unless p ~ p. Thus, we want to bound For this, we will use the
full strength of the Schur-Weyl toolbox. We start with
27 +1 27 +1
[T(w)] [T(w)]

_ @i+ )m(n,j) [T(n,]) ] (2j+1)m(n7.7)tr|:T(n,j) ]
o] R

tr [Qj,Up®n] [PJ,O@WP ®”] = [T(n’])T(”’]) ® Iy, ]

In the second to last step, we have used that T)((n’j ) Tén’j ) = T)(g’,j) for arbitrary operators, as well as

cyclicity of the trace. We now use the upper bound ([7.3)), the lower bound in (7.4]) (observing that 7
has eigenvalues {p,1 - p}), and the upper bound ([7.5)) (with k& =2). The result is that

27+ 1)2nh(®) o h(5) 6Bl - 2n I
[QJ, ]_ %(2]+1)2 2n(h(p)+6(p||z)) (tr /\/ﬁp\/ﬁ) < (n+1)2F(p,p)2 ,

where in the second step we used §(pllz) > 0 as well as 2j < n. This is the desired upper bound.
Indeed, it implies that

Pr(T(p,p) > €) < Pr(F(p,p)® < 1 2) de(n+1 (1-e2)n

< (n+ 1)32nlog(1752) < (n+ 1)327ns2

(The first inequality is a consequence of the upper bound in eq. (7.10). The last holds whenever

e< % and is only for illustration.)
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