PHYSICS 491: Symmetry and Quantum Information April 20, 2017

Solution of the spectrum estimation problem
Lecture 6 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

6.1 Solution of the spectrum estimation problem

Last time we started discussing the spectrum estimation problem for qubits. Given p®", where p had
eigenvalues p > 1 — p, we wanted to design a measurement that tells us information about p € [%, 1].
For this, we considered the decomposition of (C2)®" into irreducible representations for SU(2):

()® =@vecm™) (6.1)
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and defined P; as the projector on the spin-j summand. We were led to these projectors because
we were looking for a measurement that respected all the symmetries: the unitary invariance of
the spectrum of p as well the permutation invariance of p®". In fact, P; is the most fine-grained
measurement that commutes with U®" and with Ry (problem [3.5). Hoping that {P;} might prove
to be a good measurement for solving the spectrum estimation problem, we started to calculate the
probability

Pr(outcome j) = tr[P;p®"] =? (6.2)

We will now finish this calculation. Our goal will be to show that this probability is exponentially

small in n, unless
1

J
==+ =~
p 2" p

Thus we will find that the measurement outcome j will lead to a good estimate p ~ p with very high
probability.

The key idea to calculating (6.2]) was to extend both (C?)®" as well as the spin-j representations
V; from SU(2) to SL(2) (see eq. (5.8)). Using that p/\/detp is an element in SL(2), we found that
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(eq. (5.9)) for arbitrary density operators p. It followed that:
tr [Pyp®"] = m(n, j) tr [T (6.4)

Last time, we calculated the right-hand side trace but not the multiplicities m(n, j). For this, we
will recall one last fact that you learned in your quantum mechanics class when studying the total
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Figure 9: By iterating the Clebsch-Gordan decomposition for Vi, ® Vi3 ® ..., we obtain a decom-
position of (C?)®" into irreducible representations of SU(2).

angular momentum. Given two irreducible representations Vj, and Vj,, we can consider their tensor
product V;, ® Vj,. This is a representation of SU(2), with U acting by Téj D Téjz). In general
this representation is not irreducible and so it can be decomposed it into irreducibles. The famous
Clebsch-Gordan rule tells us what that this decomposition look as follows:

Viie Vi, 2V @Vjipa1e...0 Wj1—j2|
In particular, for jo = %, we have

Vieijp® Vs itj>0

L (6.5)
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Since a single qubit is nothing but a spin-1/2 representation, this allows us to decompose (C?)®"

by successively applying the Clebsch-Gordan rule (6.5)):
(C2)®1 =V
(C)2VipeVip=VieV
(CH® (ol e Vipp=V30 @ (V1/2 ® V1/2) ® Vo

This process is visualized in fig. |§| and the general result is as follows: The multiplicity m(n,j) of V;
in (C?)®" is precisely equal to the number of paths from (0,0) to (n,j) in fig. @

How can we estimate the number of paths? Any path can be specified by a number of n “ups”
and “downs”. The number of “ups” u must satisfy (u - (n-u))/2=u-n/2=j in order to end up at
(n,7). Thus there are at most (%ﬁj) such paths. (This is only an upper bound because paths that

go below zero are invalid.) As a consequence of eq. (|5.1]), this means that

m(n,j) < (nn

) < gnh(P) (6.6)
2

where we recall the binary Shannon entropy
h(p) = -plogp - (1 - p)log(1 - p)

46



from the compression of coin flips in section . Thus the multiplicites m(n,j) grow at most
exponentially, with exponent is given by precisely by the binary entropy. Note that, as a consequence

vk Pj = (dim V;) m(n, 5) < (25 + 1)2""®) < (n +1)2"h®), (6.7)
This fact will prove important later for information theoretic applications.

Remark. More generally, given two representations H and H' of some group G, we can always
consider their tensor product H®H' as a representation of the group G, with representation operators
Ty, ® Ty . Note that this is precisely the same notation as used in eq. 1) if we think of cm(md) gg
an m(n, j)-dimensional trivial representation of SU(2).

The other ingredient in eq. lb is the trace of the operator T p(n’j ) Last time, we computed the
following upper bound (eq. ([5.10)):

e [T ] < (2j + 1)pEI(1- )37
We can rewrite this as follows,
e [70)] < (25 + 1)grl[presp P ios(-n)] (9 4 q)g-nlplos - iog 7]
_ (2 + 1)2 [ Plogp=(-p)los(1-p)wplog F+(1-p)log 1]
< (2] + 1)2*”[]1(13)*5(13“?)]’ (6.8)
where we have introduced the binary relative entropy

. D . 1-p
5(p|p) =plog]—j +(1-p)log T

Remark. The relative entropy is an important quantity in information theory and statistics. Note
that it is not symmetric under exchanging p < p.

What is the purpose of this rewriting? If we plug egs. and into eq. (6.4) we obtain the
following result:

Pr(outcome j) = tr[P;p®"] < (25 + 1)27 0 @lp) (6.9)

The point now is that the relative entropy is a distance measure between probability distributions:
It is nonnegative and §(p|p) = 0 if and only if p = p. More quantitatively, it satisfies the following
inequality, a special case of the so-called Pinsker’s inequality (problem [3.4):

5(plp) 2 %(ﬁ—p)2 (6.10)

Thus, unless p ~, the probability in eq. is exponentially small. This at last allows us to solve
the spectrum estimation problem for qubits:

Given p®", perform a total spin measurement in the state p®” using the projective measurement
{P;}. Upon outcome j, estimate that the maximal eigenvalue of the state p is p = % + % Then,

Pr(p-pl>e)= Y tr[Pp®] < (n+1)227 w2, (6.11)
j s.th. |p-pl>e
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where we have used that egs. and (6.10), that 25 + 1 <n + 1, and that the sum runs certainly
over no more than n + 1 values of j. This means that p ~ p with very high probability.

In lecture we will discuss how to implement the spectrum estimation measurement concretely
by a quantum circuit. Spectrum estimation has been realized experimentally in [Beverland et al.
(2016).

6.2 Towards quantum data compression

There is another interpretation of what we have just achieved. For fixed € > 0, consider the projection
operator
Pz )P
j s.th. |p-pl<e
on all sectors j in eq. for which [p — p| < e. Equation (6.11]) asserts precisely that

tr [ P,p®"] > 1 (6.12)
as n — oo, which in turn implies that
Pnp@mPn ~ p®n.

This means that if we perform a measurement {}5n, 1 —]-:’n} on p®" then, for large n, this measurement
will proceed with very high probability and leave the state p®" almost unchanged. We will call the
subspace H, that P, projects on a typical subspace for p®" (although we caution that the traditional
definition is somewhat different).

Since the binary entropy is continuous,

- pl <e=|h(p) - h(p)| < 5(e)

for some function § such that §(¢) - 0 as € > 0. (To obtain a more quantitive bound, you could
use Fannes’ inequality that your derive in problem ) In view of eq. (6.7), this implies that the
subspace that P, projects on has dimension no larger than

dim H,, < (n +1)227A(P)+3(2) (6.13)

Thus, the post-measurement state is supported on a possibly much smaller subspace of roughly
n(h(p) +9) qubits.

Let us end with a word of caution: In the coin flip example in section the purpose of the
compression scheme was to communicate Alice’ actual sequence of coin flips to Bob — not for Bob to
flip its own biased coin. The latter would only reproduce the probability distribution of the biased
coin, but not the actual sequence of coin flips observed by Alice! In the same way, the purpose of a
quantum compression scheme is not simply to produce the quantum state p®™ at Bob’s side.

In fact, compression protocols are usually designed for known information sources. In the coin
flip example, this means that Bob already knows the parameter p of the coin and could flip his own
biased coin with no communication required at all. (Since its quantum analogue is the eigenvalue
spectrum of p, you might in fact be concerned that spectrum estimation solves a problem that is
completely irrelevant to compression.)

Next time, we will carefully define what it means to compress quantum information and see that
the properties in eqs. (6.12]) and (6.13]) above are nevertheless precisely the properties required to
solve the problem.
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