
PHYSICS 491: Symmetry and Quantum Information April 18, 2017

Shannon theory, data compression, spectrum estimation
Lecture 5 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

5.1 A first glance at information theory: data compression

Imagine that Alice has acquired a biased coin, with heads coming up with p = 75% probability. She
is excited about her purchase and wants to let Bob know about the result of her coin flips. If the
flips the coin once, how many bits does she need to communicate the result to Bob? Clearly, she
needs at least one bit. Otherwise, since both outcomes are possible, she would make an error 25% of
the time.

Now suppose that Alice flips her coin not only once, but a large number of times – say n times.
She would still like to communicate the results of her coin flips to Bob. Clearly, Alice could send
over one bit immediately after each coin flip. Can she do better by waiting and looking at the whole
sequence of coin flips? If we assume that her coin flips are independent then we would expect that
heads will come up j ≈ pn times for large enough n. This suggests the following compression scheme:

• If the number of coin flips j is not within (p ± ε)n, Alice gives up and signals failure.

• Otherwise, she sends j over to Bob, as well as the index i of her particular sequence of coin
flips in a list Lj that contains all possible coin flips with j heads and n − j tails.

If our two protagonists have agreed beforehand on the lists Lj (you might call them a codebook),
then Bob will have no trouble decoding the sequence of coin flips – he merely looks up the i-th entry
in the list Lj . Note that, for any fixed ε > 0, the probability of failure in the first step is arbitrarily
small – this is a consequence of the strong law of large numbers.

Remark. If failure is not an option, Alice may instead send the uncompressed sequence of coin flips
instead of giving up. This leads to a similar analysis and will be left as an exercise.

What is the compression rate of this protocol? To send j, we need roughly (logn)/n bits per
coin flip, which is negligible for large n.1 How many sequences are there with j heads and n − j
tails? This is given by the binomial coefficient (

n
j
). Thus, to communicate the index i ∈ {1, . . . , (nj)},

Alice needs to send roughly 1
n log (

n
j
) bits per coin flip. To estimate this rate, we note that for any

x ∈ [0,1],

xj(1 − x)n−j(
n

j
) ≤ (x + (1 − x))n = 1

1Here and throughout the rest of these lecture notes, log denotes the logarithm to the base two.
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Figure 7: The binary entropy function h(p) defined in eq. (5.2).

and hence, choosing x = j
n ,

1

n
log (

n

j
) ≤ −

j

n
log

j

n
− (1 −

j

n
) log(1 −

j

n
). (5.1)

Since j
n ≈ p, the right-hand side is approximately equal to the binary (Shannon) entropy

h(p) ∶= −p log p − (1 − p) log(1 − p). (5.2)

See fig. 7 for a plot of the binary entropy function.
In total, the protocol sketched above will achieve a compression rate of roughly h(p) ≤ 1 bits per

coin flip. E.g., h(75%) = 0.81 – so Alice achieve savings of roughly of 19%. We can get arbitrarily
close to h(p) by decreasing ε, at the expense of n having to become larger and larger for the
probability of failure to vanish. It is not hard to see the compression rate h(p) is optimal. This
is Shannon’s famous noiseless coding theorem – it is called “noiseless” since we assume that the
communication line from Alice to Bob is perfect.

The coin flip example illustrates the traditional core principles of information theory, or Shannon
theory : We are interested in finding optimal asymptotic rates for information processing tasks such
as compression (the task that you have just solved), information transmission over noisy channels,
etc. Quantum information theory has very analogous goals – except that now we are dealing with
quantum information rather than classical information. At a fundamental level, this means that we
are interested in the asymptotic behavior of a large number of independent copies of a quantum
state ρ, i.e., in ρ⊗n for large n (the so-called i.i.d. limit).

Example 5.1 (Warning). If ρ = ∣ψ⟩ ⟨ψ∣ is a pure state then ρ⊗n = ∣ψ⟩⊗n ⟨ψ∣⊗n is an operator on the
symmetric subspace. We explored this quite extensively in lectures 2 to 4. However, as soon as ρ is a
mixed state, ρ⊗n is no longer supported purely on the symmetric subspace. A simple example is the
maximally mixed state τ = 1/d. Clearly, τ⊗n = 1/dn is supported on all of (Cd)⊗n. Thus we need to
develop new techniques.

Remark 5.2. In recent years, there has been an increased interest in understanding optimal in-
formation processing rates in non-asymptotic scenarios. This is largely beyond the scope of these
lectures, although we might have a brief glance at these ideas in the last week of class.

5.2 Spectrum estimation

Today, we will start developing the appropriate machinary for working with independent copies of a
quantum state, ρ⊗n. A popular approach that you will find in many textbooks is to work in the

38



eigenbasis of ρ in order to turn the quantum problem into a classical problem (e.g., Nielsen and
Chuang, 2002, Wilde, 2013). In this class we will pursue a different, and arguably more “invariant”
route. What this means exactly will become clear over the coming lectures, but the practical
advantage of exploiting all available symmetries will be that we are naturally led to universal
protocols that work not only for a single state ρ but for whole classes of states (e.g., all states ρ with
the same eigenvalues).

When we discussed the symmetric subspace, our motivation was to solve an estimation problem,
namely, the estimation an unknown pure state ∣ψ⟩ given n copies ∣ψ⟩⊗n. Today, we will again be
interested in an estimation problem: We would like to estimate the eigenvalues of an unknown
density operator ρ, given n copies ρ⊗n. That is, if p1 ≥ ⋅ ⋅ ⋅ ≥ pd denote the eigenvalues of ρ then we
would like to define a measurement {Qp̂} such that, when we measure on ρ⊗n, we obtain an outcome
such that p̂ ≈ p. This task is known as the spectrum estimation problem (Keyl and Werner, 2001). It
is an easier problem than estimating the full density operator ρ, and it allows us to focus on the key
difference between pure and mixed states – their eigenvalue spectrum. We will spend the rest of
today’s lecture and part of lecture 6 solving the spectrum estimation problem.

The tools that we will develop in the course of solving this problem will be prove useful for
working with asymptotic quantum information more generally. In lecture 7, we will use them to
compress quantum information and we will also sketch how one can estimate the entire unknown
quantum state ρ from ρ⊗n, thereby solving the task of quantum states estimation of mixed state,
also known as quantum state tomography.

Symmetries of the spectrum estimation problem

If ρ is a quantum state on Cd then the state ρ⊗n is a quantum state on (Cd)⊗n. As discussed
in section 3.1, this space is a representation for two groups: (i) the permutation group Sn, with
representation operators Rπ, and (ii) the unitary group U(d), with representation operators TU = U⊗n.
The operator ρ⊗n is permutation-invariant as defined last time, i.e., it commutes with permutations,
[Rπ, ρ

⊗n] = 0 for all π ∈ Sn. We may explicitly verify this on a product basis:

Rπρ
⊗n

∣x1, . . . , xn⟩ = Rπ (ρ ∣x1⟩ ⊗ . . .⊗ ρ ∣xn⟩) = ρ ∣xπ−1⟩ ⊗ . . .⊗ ρ ∣xπ−1⟩

= ρ⊗n(∣xπ−1⟩ ⊗ . . .⊗ ∣xπ−1⟩) = ρ
⊗nRπ ∣x1, . . . , xn⟩ .

On the other hand, ρ⊗n does not commute with the action of the unitary group: Instead,

U⊗nρ⊗nU †,⊗n
= (UρU †

)
⊗n

which amounts to replacing ρ ↦ UρU †. This operation changes the eigenbasis, but leaves the
eigenvalues the same. In other words, while the permutation symmetry is a symmetry of the state,
the unitary symmetry is a symmetry of the problem that we are trying to solve! This suggests that
both symmetries should play an important role, and it prompts us to investigate the representation
(Cd)⊗n more closely.

Example 5.3 (Warmup). Suppose we are just given two copies of the unknown quantum state, i.e.,
ρ⊗2. This is a density operator on

(Cd)⊗2
= Sym2

(Cd) ⊕⋀2
(Cd).
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Figure 8: By measuring the swap operator on independent copies of ρ⊗2, we can estimate the purity
trρ2 of the quantum state.

Both the symmetric and the antisymmetric subspace are irreducible representations (you show this
in problem 2.3 for the symmetric subspace; the antisymmetric subspace can be treated completely
analogously). The permutation group S2 has just two elements, the identity permutation and the
nontrivial permutation π = 1↔ 2. The corresponding operator is known as the swap operator

F = Rπ = ∑
a,b

∣a, b⟩ ⟨b, a∣ .

It commutes both with the representation of U(d) as well as the one of S2 (any operator commutes
with itself and with the identity matrix). Thus, F is an observable of exactly the kind that we are
looking for. Its eigenvalues are +1 on the symmetric subspace and −1 on the antisymmetric subspace.
In problem 2.1, you show the following “swap trick”:

⟨F ⟩ = trρ⊗2F = trρ2.

The quantity trρ2 is called the purity of ρ, since it is equal to 1 only if the state ρ is a pure state. (It
is closely related to Rényi-2 entropy S2(ρ) = − log trρ2 that you study in problem 2.1.) The important
point though is that if ρ has eigenvalues r1 ≥ ⋅ ⋅ ⋅ ≥ rd then

trρ2
= ∑

k

r2
k,

and hence already this simple measurement allows us to learn something about the eigenvalues of ρ.
Just to be perfectly clear: When measuring the observable F on ρ⊗2, the measurement outcome is

either ±1. Only when repeated many times on independent copies of ρ⊗2 will these signs average to
trρ2 (fig. 8).

For qubits, d = 2, example 5.3 provides a complete solution (since p1+p2 = 1, there is only a single
unknown, which can be determined from trρ2 = p2

1 + p
2
2). In the following, we will discuss a different

solution which fully exploits the symmetries of the problem and generalizes readily to any d. The
protocol is due to Keyl and Werner (2001) and we will follow the proof strategy of Christandl and
Mitchison (2006). It will prove to be an important building block for several quantum information
applications that we will discuss in the remainder of this course.
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Towards a solution of the spectrum estimation problem

We start by decomposing the Hilbert space of n qubits into irreducible representations of SU(2).
The answer can be written ni the form:

(C2
)
⊗n

≅⊕
j

Vj ⊗Cm(n,j), (5.3)

where Vj denotes the irreducible representation of SU(2) with spin j andm(n, j) are the multiplicities
that we need to determine. That is, for any U ∈ SU(2) we have that

U⊗n
≅⊕

j

T
(j)
U ⊗ 1Cm(n,j) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T
(0)
U ⊗ 1Cm(n,0)

T
(1/2)
U ⊗ 1Cm(n,1/2)

⋱

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (5.4)

Here we write T (j)
U for the representation operators of the spin-j representation.

Recall that we are looking for a measurement that commutes with both the action of SU(2) and
Sn. The projection operator Pj onto a direct summand in eq. (5.3) seems like a plausible candidate.
It measures the total spin – generalizing example 5.3. By design, Pj commutes with the action of
the unitary group. Indeed, in view of eq. (5.4) it clearly commutes with U ∈ SU(2), and any element
of U(2) can be written in the form eiφU where U ∈ SU(2).

Does Pj also commute with the action of Sn? Yes, this follows from [Rπ, U
⊗n] = 0 and Schur’s

lemma, as you will verify in problem 3.5. We have found the desired candidate measurement!

In the remainder of today’s lecture, we will start analyzing the projective measurement {Pj}.
That is, we would like to bound the probabilities

Pr(outcome j) = tr [ρ⊗nPj] . (5.5)

Note that these probabilities remain unchanged if we substitute ρ↦ UρU †, as Pj commutes with
U⊗n. Since we can always diagonalize ρ by a unitary there is thus no harm in assuming that ρ is
already a diagonal matrix

ρ = (
p

1 − p
) (5.6)

with p ≥ 1 − p, i.e., p ∈ [1
2 , 1]. Our goal will be to show that (5.5) is exponentially small in n most of

the time – except when we can obtain a good estimate of the spectrum from j (we will later see that
p̂ ∶= 1

2 +
j
n ≈ p provides such an estimate).

How would we go about analyzing eq. (5.5)? The idea is that ρ⊗n looks just like the representation
operators U⊗n – except that ρ is almost never a unitary matrix! To go beyond unitaries, we need to
talk about some more representation theory.

Representation theory of SU(2) and SL(2)
As we have already used several times in this course, the irreducible representations of SU(2) are
labeled by their spin j ∈ {0, 1

2 ,1,
3
2 , . . .}. We denote the spin-j irrep by Vj and its representation

operators by T (j)
U . The representation Vj is of dimension 2j + 1.
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Remark 5.4. In your quantum mechanics class, you have probably analyzed the representation
theory of SU(2) by considering its “generators”: For any traceless Hermitian matrix H, U = exp(iH)

is in SU(2). Given a representation H̃ of SU(2) with representation operators T̃U , we can define

H̃ =
1

i

d

dt
∣=0
T̃exp(itH).

Sometimes this is called the representation of the Lie algebra of SU(2) (though technically speaking
the Lie algebra of SU(2) consists of the antihermitian traceless matrices). Note that the assignment
H ↦ H̃ is linear. Since the real vector space of traceless Hermitian matrices is spanned by the Pauli
operators X,Y ,Z (the “generators”), we can fully understand the representation H̃ by considering the
operators X̃, Ỹ , Z̃.

In your quantum mechanics class, you likely followed this approach to analyze the irreducible
representations of SU(2). For example, you might remember that Vj has a basis ∣j,m⟩, where
m = −j, . . . , j − 1, j, such that

Z̃ ∣j,m⟩ = 2m ∣j,m⟩ .

Moreover,

Q̃ = (X̃)
2
+ (Ỹ )

2
+ (Z̃)

2
= 4j(j +

1

2
)1Vj .

The operator Q̃ is called the quadratic Casimir operator of SU(2), and we used the fact that it acts
by a scalar on each irreducible representation of SU(2) in lecture 1 to find a qubit .

In the previous lectures, we used to great effect that the symmetric subspace is irreducible –
and you will show this in problem 2.3 by following precisely the strategy outlined in the preceding
remark. This means that Symn(C2) ought to be one of the spin-j irreps. It is very easy to see that
j = n

2 , and we record this important fact:

Vj ≅ Sym2j
(C2

). (5.7)

It gives us a very simple way of realizing the spin-j representation concretely, as will be prove useful
in just a momenet.

An important fact that was perhaps never explicitly spelled out in your quantum mechanics
class is the following: Any unitary representation of SU(2) can be extended to a (holomorphic,
non-unitary) representation of the group SL(2) in a unique way. For example, our representation
TU = U⊗n of SU(2) on (Cd)⊗n can be extended to Tg = g⊗n for g ∈ SL(2). We can also restrict this
action to the symmetric subspace. Since we can define the spin-j representation using the symmetric
subspace (eq. (5.7)), we can likewise define T (j)

g for any g ∈ SL(2). Thus, for any g ∈ SL(2), eq. (5.3)
reads

g⊗n ≅⊕
j

T (j)
g ⊗ 1Cm(n,j) . (5.8)

Remark. A general way of defining the extension from SU(2) to SL(2) is as follows: In remark 5.4,
we defined H̃ for Hermitian matrices we can safely extend it by linearity to arbitrary complex traceless
matrices M . But then exp(M) is an arbitrary matrix in SL(2) and this allows us to extend an
arbitrary unitary representation of SU(2) to SL(2): For g = exp(M), define Rg ∶= exp(M̃). It is
not hard to see that a subspace is invariant for SU(2) iff it is invariant for the operators H̃ iff it
is invariant for the operators M̃ iff it is invariant for SL(2). This can be used to argue that the
finite-dimensional representation theory of SU(2) and of SL(2) is completely identical.
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Bounding the probability distribution

Why is this important? We are interested in understanding the operator ρ⊗n on (C2)⊗n. Suppose
that our density matrix ρ has no zero eigenvalues. Then it is is invertible and

ρ̃ ∶= ρ/
√

detρ

is an element in the group SL(2), and we can interpret ρ̃⊗n as the corresponding representation
operator on (C2)⊗n! By eq. (5.8), it follows that

ρ⊗n = (detρ)n/2 ρ̃⊗n ≅ (detρ)n/2⊕
j

T
(j)
ρ̃ ⊗ 1Cm(n,j) =⊕

j

(detρ)n/2 T (j)
ρ̃

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶T (n,j)ρ

⊗1Cm(n,j) (5.9)

By continuity, this equation can be extended to all ρ ≥ 0.

Remark. Since any operator X can be infinitesimally perturbed to become invertible, we can use the
same strategy to analyze X⊗n for arbitrary operators X on C2.

As a consequence of eq. (5.9), our desired probability (5.5) reads

tr [Pjρ
⊗n] = tr [T (n,j)

ρ ⊗ 1Cm(n,j)] = (detρ)n/2 tr [T
(j)
ρ̃ ⊗ 1Cm(n,j)] =m(n, j)(detρ)n/2 tr [T

(j)
ρ̃ ] .

How can we compute the right-hand side trace? By eq. (5.7) we can simply compute the trace of
ρ̃⊗2j on the symmetric subspace:

tr [T
(j)
ρ̃ ] =

2j

∑
k=0

⟪k∥ρ̃⊗2j
∥k⟫ = (detρ)−j

2j

∑
k=0

⟪k∥ρ⊗2j
∥k⟫ = (detρ)−j

2j

∑
k=0

pk(1 − p)2j−k
≤ (detρ)−j(2j + 1)p2j .

Here, we compute the trace in the occupation number basis

∥k⟫ ∝ ∣0⟩⊗k ∣1⟩⊗(2j−k)
+ permutations

of the symmetric subspace (see eq. (2.5) and problem 2.3). In the third step, we used that ρ is
diagonal, and in the last step we bounded each summand by p2j using that p ≥ 1 − p (see eq. (5.6)).
Thus:

tr [T (n,j)
ρ ] = (detρ)n/2 tr [T

(j)
ρ̃ ] ≤ (2j + 1)(detρ)n/2−jp2j

= (2j + 1)p
n
2
+j

(1 − p)
n
2
−j

= (2j + 1)2n
[( 1

2
+ j
n
) log p+( 1

2
− j
n
) log(1−p)]

= (2j + 1)2n
[p̂ log p+(1−p̂) log(1−p)].

(5.10)

where we have defined p̂ ∶= 1
2 +

j
n . If we plug this back into the preceding equation then we obtain

tr [Pjρ
⊗n] ≤ (2j + 1)m(n, j)2n

[p̂ log p+(1−p̂) log(1−p)].

This already looks quite suggestively as if the eigenvalue p has something to do with p̂!
However, we still need to determine the multiplicities m(n, j). We will do this next time – it will

allow us to solve the spectrum estimation problem completely. We will then put the tools developed
into a more general context and use them to tackle a number of important applications.
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