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Mixed state entanglement, monogamy of entanglement
Lecture 4 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Monogamy of entanglement is the idea that if two systems are strongly entangled then each of
them cannot be entangled very much with other systems. For example, suppose that

ρAB = ∣Ψ⟩ ⟨Ψ∣AB

where ∣Ψ⟩AB is in a pure state – say, a maximally entangled state. Since ρAB is pure, any extension
ρABC must factorize,

ρABC = ρAB ⊗ ρC ,

as we discussed at the end of lecture 3. Thus A and B are both completely uncorrelated with C
(fig. 3). In particular, ρAC = ρA ⊗ ρC and ρBC = ρB ⊗ ρC are product states.

Remark. While correct, the above analysis should perhaps be taken with a grain of salt. Since it
only relied on ρAB being in a pure state, it is also applicable to, say, ψAB = ∣0⟩A ⊗ ∣0⟩B – which is a
product state, not an entangled state! Nevertheless, the conclusion remains that also in this case ρAC
and ρBC have to product states. However, this is a consequence of ρA = ∣0⟩ ⟨0∣A and ρB = ∣0⟩ ⟨0∣B
being pure, not of entanglement between A and B.

Does monogamy hold more generally and can it be made quantitative? Indeed this is possible –
and we will see that symmetry is the key.

4.1 Mixed state entanglement

First, though, we will have to talk about what it means for a quantum state to be entangled. For
pure states ∣ψ⟩AB, the answer is simple: A state is entangled if and only if is not a tensor product,

∣ψ⟩AB ≠ ∣ψ⟩A ⊗ ∣ψ⟩B .

For mixed states, however, there are non-product quantum states that should nevertheless not be
considered entangled.

Figure 3: Illustration of monogamy of entanglement.
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Example 4.1 (Classical joint distributions). Let p(x, y) be a probability distribution of two random
variables. Following (3.6), we construct a corresponding density operator

ρAB = ∑
x,y

p(x, y) ∣xy⟩AB ⟨xy∣AB = ∑
x,y

p(x, y) ∣x⟩ ⟨x∣A ⊗ ∣y⟩ ⟨y∣B .

In general, ρAB is not a product state (indeed, this is only the case if the random variables are
statistically independent). Yet this corresponds to classical correlations, not to quantum entanglement.
For example, if Alice and Bob know the outcome of a fair coin flip, their state would be described by
the density operator

ρAB =
1

2
(∣00⟩ ⟨00∣AB + ∣11⟩ ⟨11∣AB) ,

that is not of product form.

This suggests the following general definition: We say that a quantum state ρAB is entangled if
it is not a mixture of product states:

ρAB ≠ ∑
i

piρ
(i)
A ⊗ ρ

(i)
B . (4.1)

Here, {pi} is an arbitrary probability distribution and the ρ(i)A and ρ(i)B . We say that states of the
right-hand side form are separable, or simply unentangled. If ρAB = ∣ψ⟩ ⟨ψ∣AB is a pure state then it
is separable exactly if it is a product, ∣ψ⟩AB = ∣ψ⟩A ⊗ ∣ψ⟩B.

Remark. There are more separable states than the classical states in example 4.1. This is because
we do not demand the operators {ρ

(i)
A } and {ρ

(i)
B } in eq. (4.1) are orthogonal.

Separable states have a pleasant operational interpretation. They are the largest class of quantum
states σAB that can be created by Alice and Bob in their laboratories if allow Alice and Bob to
perform arbitrary quantum operations in their laboratory but restrict their communication with
each other to be classical.

Let us denote the set of all density operators on HA ⊗HB by

QAB = {ρAB ≥ 0, trρAB = 1}

and the subset of separable states by

SEPAB = {ρABseparable}.

Both sets are convex. As a consequence of SEPAB being convex, it can be fully characterized by
separating hyperplanes, i.e., hyperplanes that contain all separable state on one side (fig. 4). These
hyperplanes gives rise to entanglement witness – one-sided tests that can be used to certify that a
state is entangled. You will explore them in problem 2.4.

Yet, it is unfortunately a difficult problem to decide if a mixed state is entangled or not. In fact,
the problem of deciding whether a given quantum state ρAB is separable is NP-hard. This implies
that we are unlikely to ever find an efficient (polynomial-time) algorithm. In practice, the situation
is less bleak since we have ways of testing whe a quantum state is approximately separable (see
below).

30



Figure 4: The set of separable states SEP is a convex subset of the set of all quantum states
Q. Hyperplanes (such as the pink one) that contain all separable states on one side give rise to
entanglement witnesses.

4.2 Monogamy and symmetry

We are now ready to study the monogamy of entanglement in more detail. We will consider two
situations where we would expect monogamy to play a role:

De Finetti theorem

First, consider a permutation-symmetric state

∣Ψ⟩A1...An
∈ Symn

(Cd).

Note that all the reduced density matrices ρAiAj are the same. Thus, every pair of particles is
entangled equally, and so we would expect that by monogamy they therefore are not entangled “very
much” (fig. 5, (a)).

The quantum de Finetti theorem (König and Renner, 2005) asserts that our expectation is indeed
correct:

ρA1...Ak ≈ ∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k (4.2)

as long as k ≪ (n − k)/d. Here, p(ψ) is some probability density over the set of pure states that
depends on the state ρ. In particular, ρA1A2 is approximately a mixture of product states for large n.

Example (Warning). The GHZ state ∣γ⟩A1A2A3
= (∣000⟩ + ∣111⟩)/

√
2 is a state in the symmetric

subspace Sym3(C2). Note that, e.g., the first particle is maximally entangled with the other two – so
clearly it is not true that permutation symmetric states are unentangled. However, if we look at the
reduced state of two particles then we find

ρA1A2 =
1

2
(∣00⟩ ⟨00∣ + ∣11⟩ ⟨11∣) =

1

2
∣0⟩⊗2

⟨0∣⊗2
+

1

2
∣1⟩⊗2

⟨1∣⊗2 .

Note that ρA1A2 is a mixture of product states. This shows that the partial trace is indeed necessary.

Permutation symmetric states arise naturally in mean-field systems. The ground state ∣E0⟩ of a
mean-field Hamiltonian H = ∑1≤i<j≤n hij is necessarily in the symmetric subspace – provided that
the ground space is nondegenerate and that n is larger than the single-particle Hilbert space. Thus,
the de Finetti theorem shows that, locally, ground states of mean field systems look like mixtures of
product states – a property that is highly useful for their analysis. For example, it allows us to use
the density p(ψ) as a variational ansatz.
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Figure 5: (a) In a permutation symmetric state, any pair of particles is entangled in the same way
and should therefore not be entangled very much. (b) Similarly, if Alice is entangled with many
Bobs in the same way then she is not entangled very much with each of them.

Extendibility hierarchy

A closely related situation is the following: Suppose that ρAB is a quantum state that has an
extension ρAB1...Bn such that

ρABi = ρAB (∀i, j)

(fig. 5, (b)). We say that ρAB has an n-extension. Thus A is equally entangled with all Bi and so we
would expect that ρAB is not entangled “very much”. Indeed, it is true that, for large n,

ρAB ≈ ∑
i

piρ
(i)
A ⊗ ρ

(i)
B ,

i.e., ρAB is again approximately a mixture of product states.
In contrast to situation (1), however, there is no longer a symmetry requirement between A and

B, i.e., this reasoning applies to general states ρAB. It turns out that one in this way obtains a
hierarchy of efficient approximates test for separability (Doherty et al., 2002, 2004). Indeed, as you
will discuss in problem 2.5, if a state ρAB is n-extendible then it is O(1/n)-close to being a separable
state (fig. 6).

4.3 The trace distance between quantum states

Before we proceed, we should make more precise what we meant when we wrote “≈” above. Let ρ
and σ be two density operators on some Hilbert space H. We define their trace distance to be

T (ρ, σ) ∶= max
0≤Q≤1H

tr[Q(ρ − σ)].

The trace distance is a metric, and so in particular satisfies the triangle inequality. It has the
following alternative expression

T (ρ, σ) =
1

2
∥ρ − σ∥1,

where we used the 1-norm, which for general Hermitian operators ∆ with spectral decomposition ∆ =

∑i λi ∣ei⟩ ⟨ei∣ is defined by ∥∆∥1 = ∑i∣λi∣. The trace distance has a natural operational interpretation
in terms of the optimal probability of distinguishing ρ and σ by a POVM measurement. You discussed
the trace distance in problem 1.3 in the special case of pure states, but the above conclusions hold
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Figure 6: The extendibility hierarchy: If a state is n extendible then it is O(1/n)-close to being
separable.

in general. There, you also proved that, for pure states ρ = ∣φ⟩ ⟨φ∣ and σ = ∣ψ⟩ ⟨ψ∣, the trace distance
and overlap are related by the following formula:

T (ρ, σ) =
√

1 − ∣⟨φ∣ψ⟩∣2 (4.3)

Remark. If X is an arbitrary observable then

∣tr[Hρ] − tr[Hσ]∣ ≤ 2T (ρ, σ)∥H∥∞, (4.4)

where ∥H∥∞ denotes the operator norm of H, defined as the maximal absolute value of all eigenvalues
of H. Indeed, we can always write H = Q −Q′< where 0 ≤ Q,Q′ ≤ ∥H∥∞, and so

∣tr[Hρ] − tr[Hσ]∣ ≤ ∣tr[Qρ] − tr[Qσ]∣ + ∣tr[Q′ρ] − tr[Q′σ]∣ ≤ 2∥H∥∞T (ρ, σ).

Equation (4.4) quantifies the difference in expectation values for states with small trace distance.
(Note that this gap gap can be arbitrarily large since we can always rescale our observable. This is
reflected by the factor ∥H∥∞.)rescale our observables.

4.4 The quantum de Finetti theorem

We will now prove the de Finetti theorem (4.2), following Brandao et al. (2016). Let

∣Φ⟩A1...An
∈ Symn

(Cd),

where n is the number of particles and d the dimension of the single-particle Hilbert space.
The basic idea is the following: Suppose that we measure with the uniform POVM (2.8) on the

last n − k systems of ρ = ∣Φ⟩ ⟨Φ∣. Then, if the measurement outcome is some ∣ψ⟩, we would expect
that the first k systems are likewise in the state ∣ψ⟩⊗k, at least on average, since the overall state is
permutation symmetric among all n subsystems.

Let us try to implement this idea. Since ∣Φ⟩ ∈ Symn(Cd), it is in particular symmetric under
permutations of the last n − k subsystems. Hence, ∣Φ⟩ = (1k ⊗Πn−k) ∣Φ⟩, and so

ρA1...Ak = trAk+1...An [∣Φ⟩ ⟨Φ∣] = trAk+1...An [(1k ⊗Πn−k) ∣Φ⟩ ⟨Φ∣]

= (
n − k + d − 1

n − k
)∫ dψ (1k ⊗ ⟨ψ∣⊗(n−k)

) ∣Φ⟩ ⟨Φ∣ (1k ⊗ ∣ψ⟩⊗(n−k)
)

= ∫ dψp(ψ) ∣Vψ⟩ ⟨Vψ ∣ .
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In the second to last step, we have inserted the resolution of identity (2.6), and in the last step, we
have introduced introduced unit vectors ∣Vψ⟩ and numbers p(ψ) ≥ 0 such that

√
p(ψ) ∣Vψ⟩ = (

n − k + d − 1

n − k
)

1/2
(1k ⊗ ⟨ψ∣⊗(n−k)

) ∣Φ⟩ . (4.5)

Note that p(ψ) is a probability density. Indeed, ∫ dψ p(ψ) = trρ = 1, since the overall state is
normalized. We would now like to prove that

ρA1...Ak = ∫ dψ p(ψ) ∣Vψ⟩ ⟨Vψ ∣ ≈ ∫ dψ p(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k =∶ ρ̃A1...Ak , (4.6)

based on the intuition expressed above that on average the post-measurement states ∣Vψ⟩ are close
to ∣ψ⟩⊗k. Let us first consider the average overlap:

∫ dψ p(ψ) ∣⟨Vψ ∣ψ
⊗k

⟩∣
2
= ∫ dψ p(ψ) ⟨Vψ ∣ψ

⊗k
⟩ ⟨ψ⊗k∣Vψ⟩

= (
n − k + d − 1

n − k
)∫ dψ ⟨Φ∣ψ⊗n⟩ ⟨ψ⊗n∣ ∣Φ⟩⟩ = (

n − k + d − 1

n − k
)(
n + d − 1

n
)

−1

⟨Φ∣Πn∣Φ⟩
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= (
n − k + d − 1

n − k
)(
n + d − 1

n
)

−1

≥ 1 −
kd

n − k
.

In the second step, we inserted the definition of ∣Vψ⟩ from eq. (4.5). And the last inequality is
precisely (2.9), since there we bounded precisely the ratio of binomial coefficients that we are
interested in here (with n↦ n + k).

It remains to show that the two states ρ and ρ̃ in eq. (4.6) are close in trace distance. Indeed,

T (ρA1...Ak , ρ̃A1...Ak) ≤ ∫ dψ p(ψ)T (∣Vψ⟩ ⟨Vψ ∣ , ∣ψ⟩
⊗k

⟨ψ∣⊗k) = ∫ dψ
√

1 − ∣⟨Vψ ∣ψ⊗k⟩∣2

≤

√

∫ dψ (1 − ∣⟨Vψ ∣ψ⊗k⟩∣2) =

√

1 − ∫ dψ ∣⟨Vψ ∣ψ⊗k⟩∣2 ≤

√
kd

n − k
.

Here, we first applied the triangle inequality, then we used the relationship between trace distance
and fidelity for pure states in eq. (1.2), and the next inequality i Jensen’s inequality for the square
root function, which is concave. Thus we have proved the de Finetti theorem (4.2):

ρA1...Ak ≈ ∫ d(ψ) ∣ψ⟩⊗k ⟨ψ∣⊗k

up to error
√
kd/(n − k) in trace distance. Explicitly, the density p(ψ) that we used in our proof is

given by ⟨Φ∣1k ⊗Qψ ∣Φ⟩, where {Qψ} is the uniform POVM (2.8).

Beyond the symmetric subspace

Our intuition behind the de Finetti theorem only relied on the fact that the reduced density matrices
were all the same. But this is a feature that states on the symmetric subspace share with arbitrary
permutation-invariant states, i.e., states that satisfy

[Rπ, ρA1...An] = 0, or RπρA1...An = ρA1...AnRπ
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for all π ∈ Sn. Examples of permutation-invariant states are states on the antisymmetric subspace,
or tensor powers of mixed states such as ρ⊗n, which we will study in more detail next week.

A useful fact is that any permutation-invariant state ρA1...An has a purification on a symmetric
subspace: That is, there exists a pure state ∣Φ⟩(A1B1)...(AnBn) ∈ Symn(HA ⊗HB), where HB is some
auxiliary space, such that ρ(A1B1)...(AnBn) = ∣Φ⟩ ⟨Φ∣ is an extension of ρA1...An . The auxiliary space
HB can be chosen of the same dimension as HA.

If we apply the de Finetti theorem to such a purification, we find that

ρ(A1B1)...(AkBk) ≈ ∫ dψAB p(ψAB) ∣ψ⟩⊗kAB ⟨ψ∣⊗kAB

up to error d2k/(n− k), since now the single-particle Hilbert space has dimension dimHA ⊗HB = d2.
If we take a partial trace over the B systems, we obtain a mixture of product states (which can now
be mixed):

ρA1...Ak ≈ ∫ dψAB p(ψAB) trB[∣ψ⟩ ⟨ψ∣AB]
⊗k

Moreover, the trace distance never increases when we take the partial trace. Thus we have proved
the following: If ρA1...An is a permutation-invariant state on (Cd)⊗k then its reduced density matrices
can be approximated by mixtures of product states

ρA1...Ak ≈ ∫ dµ(ρ)ρ⊗k

up to error d2/(n− k) in trace distance. Here, dµ is some probability measure on the space of mixed
states that depends on the state ρ.

Nowadays, there are many variants of the de Finetti theorem that quantify the monogamy of
entanglement in interesting and useful ways. Surveying some of them could make for an interesting
course project.
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