
PHYSICS 491: Symmetry and Quantum Information April 11, 2017

Representation theory, density operators, partial trace
Lecture 3 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

In this lecture, we’ll revisit some fundamentals: First, we discuss representation theory more
systematically and prove the “resolution of the identity” formula (2.6) from last lecture. Then we
recall the notion of a density operator and discuss the partial trace, which allows us to define the
quantum state of subsystems.

3.1 Representation theory primer

A (finite-dimensional unitary) representation of a group G is given by (i) a (finite-dimensional)
Hilbert space H, and (ii) unitary operators Rg on H for every group element g ∈ G such that the
following two laws are satisfied:

R1 = , Rgh = RgRh

Every group has a trivial representation, given by identity operators Rg = H acting on a one-
dimensional space H. We will often simply speak of “the representation H”, but we always have
associated operators Rg in mind. All representations that we will ever study in this course will be
unitary and finite-dimensional.

A useful way of understanding a representation is to decompose it into smaller building blocks.
Suppose that H̃ ⊆H is an invariant subspace, i.e., a subspace such that RgH̃ ⊆ H̃ for all g ∈ G. Then,
the orthogonal complement H̃⊥ is also an invariant subspace! Indeed, if ��� ∈ H̃⊥ then, for all � � ∈ H̃,

� �Rg ��� = �R
†
g ��� = 0,

since R†
g � � ∈ H̃; this shows that Rg ��� ∈ H̃

⊥. As a consequence, the operators Rg are block diagonal
with respect to the decomposition H = H̃⊕ H̃⊥, i.e.,

Rg = �
R̃g 0

0 R̃⊥g
� .

Note that the block R̃g is a representation on H̃ and the block R̃⊥g is a representation on H̃⊥. Thus
we have successfully decomposed the given representation into two “smaller” representations. We can
apply the same reasoning separately to H̃ and H̃⊥, and continue until we arrive at a decomposition

H =H1 ⊕H2 ⊕ . . .⊕Hm (3.1)

that cannot be refined further. That is, the building blocks Hj have no interesting invariant subspaces
(i.e., the only invariant subspaces are Hj itself and {0}, neither of which allow us to decompose
further). We call such representations Hj irreducible representations – or “irreps”.
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How can we compare different representations? An intertwiner J ∶H →H′ is a map such that

JRg = R
′

gJ

(hence the name). If there exists an invertible intertwiner J then we say that the two representations
H and H′ are equivalent, and write H ≅H′. This invertible intertwiner can always be chosen to be a
unitary operator, and we will always assume that all invertible intertwiners under consideration are
unitary operators. Note that in this case we have

JRgJ
−1
= JRgJ

†
= R′g

so the operators {Rg} and {R′g} differ only by an overall “base change”. We will use the notation
H ≅H

′ and Rg ≅ R
′

g.

Example. An example that you all know well is the group SU(2) of unitary 2 × 2-matrices with
unit determinant, which arises in the study of rotational symmetries of quantum systems. Up to
equivalence, its irreducible representations are labeled by their spin

j ∈ {0,
1

2
,1,

3

2
, . . .}.

E.g., V0 is the one-dimensional trivial representation (also called the singlet), V1�2 ≅ C2, V1 is the
triplet representation, etc. We used the decomposition of SU(2)-representations into irreducibles
briefly in section 1.2 to find a qubit, and will revisit it in greater detail in a later lecture.

Example 3.1. The permutation group S3 has three irreducible representations (up to equivalence):

(i) The trivial representation W = C �0�, with R⇡ �0� = �0�.

(ii) The sign representation W = C �0�, with R⇡ �0� = sign⇡ �0�.

Here sign⇡ denotes the sign of a permutation ⇡ ∈ Sn, defined to be −1 for transpositions (“swaps”)
i↔ j. It is extended to arbitrary permutations by the requirement that sign⇡⌧ = (sign⇡)(sign ⌧).
(This assignment is well-defined, as you may verify, e.g., in the special case S3.)

Now consider the representation H = C3, with R⇡ �i� = �⇡(i)�. It is not itself irreducible. However:

(iii) The invariant subspace

W = {↵ �0� + � �1� + � �2� ∶ ↵ + � + � = 0} ⊆ C3

is a two-dimensional irreducible representation of S3.

Its orthogonal complement is W ⊥
= C(�0� + �1� + �2�) ≅W . Hence:

C3
≅W ⊕W

The curious labeling of the irreps will become more clear when we discuss Schur-Weyl duality (see
remark 7.2).
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An important tool for us is the following mathematical result, known as Schur’s lemma.

Lemma 3.2 (Schur). Let J ∶H →H′ be an intertwiner between irreducible representations Rg, R′g.

(i) Either J is invertible (and hence H ≅H′) or J = 0.

(ii) If H =H′ and Rg = R
′

g then J ∝ H (i.e., any self-intertwiner is necessarily a multiple of the
identity operator).

Schur’s lemma shows that intertwiners between irreducible representations are rigidly determined.
In particular, there are no nonzero intertwiners between inequivalent irreducible representations. We
will not prove this result – you are encouraged to look it up in your favorite textbook (e.g., Fulton
and Harris, 2013) – but we will profitably use it many times in this class.

Normal forms of representations

Now suppose that someone handed us a list of irreducible representations of a group G. Let us write
Vj for the Hilbert space, R(j)g for the operators, and j runs over some index set J that labels the
different irreps. We assume that the list is complete (i.e., that any other irreducible representation is
equivalent to some Vj) and that it is irredundant (i.e., that Vj �≅ Vj′ if j ≠ j′). We just saw two such
lists for G = SU(2) and G = S3, respectively.

Then, if H is an arbitrary representation of G, we can first decompose as in eq. (3.1). Since each
Hk in eq. (3.1) is irreducible, it must be equivalent to some Vj – say Hk ≅ Vjk . Thus:

H ≅ Vj1 ⊕ . . .⊕ Vjm (3.2)

Suppose that nj is the number of times that Vj appears in this list, i.e., nj =#{k ∶ jk = j}. Let us
reorder (3.2) according to the different values of j:

H ≅�

j∈J
Vj ⊕ . . .⊕ Vj
������������������������������������������������������������

nj times

(3.3)

The numbers nj are uniquely determined – as a consequence of Schur’s lemma! They fully char-
acterize the representation H, up to equivalence. A useful alternative way of writing down the
decomposition (3.3) is as follows:

H ≅�

j∈J
Vj ⊗Cnj , (3.4)

where G acts on the right-hand side by the block-diagonal matrices

�

k
R(j)g ⊗ nj .

(We use the notation � to stress that they are block diagonal with respect to the direct sum
decomposition of the Hilbert space that they act on, i.e., eq. (3.4).) We may think of eq. (3.3) or
eq. (3.4) as a “normal form” of the representation H.

Remark. The fact that unitary representation H can be brought into a normal form is completely
analogous to how, e.g., a unitary or Hermitian matrix can always be diagonalized.

Representation theory tells us about the list of irreducible representations for a given group G
and how to determine the decomposition (3.3) or (3.4) of a representation into its irreducible pieces
(in particular, how to calculate the numbers nj).
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Proof of the resolution of the identity for the symmetric subspace

Schur’s lemma allows us to at last deduce eq. (2.6). To see this, we first observe that the space

(Cd
)
⊗n

is not only a representation of Sn, as discussed in section 2.2, but also of the unitary group U(d).
Its elements are the unitary d × d-matrices U , and its representation on (Cd

)
⊗n is defined as follows:

TU = (U ⊗ . . .⊗U) = U⊗n

Next week, we will learn much more about the way (Cd
)
⊗n decomposes with respect to the groups

Sn and U(d). For today, we only note that the two group actions commute:

R⇡TU = TUR⇡, or [R⇡, TU ] = 0. (3.5)

Let us verify this explicitly:

R⇡TU(� 1�⊗ . . .⊗ � 1�) = R⇡(U � 1�⊗ . . .⊗U � 1�)

= U � ⇡−1(1)�⊗ . . .⊗U � ⇡−1(n)� = TUR⇡(� 1�⊗ . . .⊗ � 1�).

Equation (3.5) implies at once that the symmetric subspace Sym
n
(Cd
) is an invariant subspace for

U(d). Indeed, if ��� ∈ Symn
(Cd
) then R⇡(TU ���) = TU(R⇡ ���) = TU ��� and so TU ��� ∈ Sym

n
(Cd
).

Importantly, the symmetric subspace is in fact an irreducible representation of U(d). You will
show this in problem 2.3. It is now easy to see that the operator ⇧

′

n defined in eq. (2.6) is equal to
the projector onto the symmetric subspace. First, note that eq. (2.7) asserts precisely that ⇧

′

n is a
self-intertwiner, i.e., TU⇧

′

n = ⇧
′

nTU (this follows from the invariance of the integral under substituting
� �� U � �). Second, note that ⇧

′

n is supported only on the symmetric subspace. We may therefore
safely think of ⇧′n as an operator from Sym

n
(Cd
) to Sym

n
(Cd
). But since the symmetric subspace

is irreducible, Schur’s lemma tells us that ⇧
′

n must be proportional to the identity operator on
Sym

n
(Cd
), i.e., to ⇧n. Since moreover

tr⇧
′

n = �
n + d − 1

n
�� d tr �� �⊗n � �⊗n�

�����������������������������������������������������������������������������������
=1

= �
n + d − 1

n
� = tr⇧n,

we conclude that ⇧n = ⇧
′

n.

3.2 Density operators and mixed states

Before we proceed with entanglement and symmetries, let us talk a bit about ensembles of quantum
states. Many of you know density operators and partial traces, but I hope this might be a good
reminder for everyone.

Suppose that {pi, � i�} is an ensemble of quantum states on some Hilbert space H, i.e., we have
the state � i� with probability pi. If X is an observable then we can compute its expectation value
by

�X� =�
i

pi � i�X � i� =�
i

pi tr [� i� � i�X] = tr

�
�
�
�
�
�
�
�
�
�
�

�

i

pi � i� � i�

���������������������������������������������������������������
=∶⇢

X

�
�
�
�
�
�
�
�
�
�
�

= tr[⇢X].
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The operator ⇢ is called a density operator, or a density matrix, or simply a quantum state on H.
It safisfies ⇢ ≥ 0 and tr⇢ = 1, and any such operator arises from some ensemble of quantum states
(think of the spectral decomposition!). The Born rule for density operators reads

Pr(outcome x) = tr[⇢Qx],

as follows from our preceding calculation.
If ⇢ = � � � � then we say that it is a pure state (and it is not uncommon to simply write ⇢ =  in

this case). Otherwise, ⇢ is called a mixed state (but we will often be sloppy and say “mixed state”
when we really should say “density operator”). Note that ⇢ is pure if and only if rk⇢ = 1, or if ⇢2 = ⇢,
or if the eigenvalue spectrum is {1,0}.

Example 3.3 (Warning!). In general the ensemble that determines a density operator is not unique.
E.g., ⌧ = �2 can be written in an infinite number of ways:

⌧ =
1

2
(�0� �0� + �1� �1�) =

1

2
(�+� �+� + �−� �−�) = . . . .

The states ⌧H = H�dimH are known as maximally mixed states. They are the analogues of
uniform distributions in probability theory.

More generally, if p(x1, . . . , xn) is a probability distribution then we may consider the ensemble
{p(x1, . . . , xn), �x1�⊗ . . .⊗ �xn�}. The corresponding density operator is

⇢X1,...,Xn = �

x1,...,xn

p(x1, . . . , xn) �x1� �x1�⊗ . . .⊗ �xn� �xn� (3.6)

and we call such a state a classical state. If all probabilities p(x1, . . . , xn) are the same then ⇢X1,...,Xn

is a maximally mixed state, ⇢ = ⌧ . In a later problem set, you will explore more generally how
classical probability theory can be embedded into quantum mechanics.

In quantum physics, density operators arise in a number of places: As statistical ensembles (e.g.,
Gibbs states in statistical quantum physics), when describing noisy sources, . . . – but importantly,
also when describing the state of subsystems, as we will discuss in the following.

Reduced density matrices and partial trace

Suppose that ⇢AB is a quantum state on HA ⊗HB and XA an observable on HA. The axioms of
quantum mechanics tell us XA ⊗ B is the appropriate observable on the joint system HA ⊗HB.
Let’s calculate the expectation value of this observable in the state ⇢AB:

�XA� = tr[⇢AB(XA ⊗ B)] =�
a,b

�a, b�⇢AB(XA ⊗ B)�a, b�

=�

a,b

(�a�⊗ �b�)�⇢AB(XA ⊗ B)(�a�⊗ �b�)

=�

a,b

�a� ( A ⊗ �b�)⇢AB(XA ⊗ B)( A ⊗ �b�) �a�

=�

a,b

�a� ( A ⊗ �b�)⇢AB ( A ⊗ �b�)XA�a�

=�

a
�a��

b

( A ⊗ �b�)⇢AB ( A ⊗ �b�)

���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
=∶trB[⇢AB]

XA�a�
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The operation trB just introduced is called the partial trace over B. If ⇢AB is a quantum state, then
trB[⇢AB] is called the reduced density operator or the reduced density matrix ⇢A of ⇢AB. We will
often denote it by ⇢A = trB[⇢AB] (even though this can at times seem ambiguous). Dually, ⇢AB is
said to be an extension of ⇢A. By construction,

tr[⇢AB(XA ⊗ B)] = tr[⇢AXA], (3.7)

and so the reduced density operator ⇢A contains all information necessary to evaluate observables
on A. It therefore faithfully describes the state of the subsystem A.

We can also compute partial traces of operator that are not quantum states: If MAB is an
arbitrary operator on HA ⊗HB then its partial trace over B is defined just as before,

trB[MAB] =�
b

( A ⊗ �b�)MAB ( A ⊗ �b�) .

(However, if MAB is not a state then we will never denote this partial trace by MA.)
The following useful rule tells us how to compute partial traces of tensor product operators

MA ⊗NB and justifies the term “partial trace”:

trB[MA ⊗NB] =MA tr[NB] (3.8)

It follows directly from the definition:

trB[MA ⊗NB] =�
b

( A ⊗ �b�) (MA ⊗NB) ( A ⊗ �b�) =MA�
b

�b�NB �b� =MA tr[NB].

Other useful properties are

• trB[(MA ⊗ B)XAB(M
′

A ⊗ B)] =MA trB[OAB]M
′

B,

• trB[( ⊗MB)OAB] = trB[OAB( ⊗MB)].

Remark. A useful convention that you will often find in the literature is that tensor products with
the identity operator are omitted. E.g., instead of XA ⊗ B we would write XA, since the subscripts
already convey the necessary information. Thus, instead of eqs. (3.7) and (3.8) we would write

tr[⇢ABXA] = tr[⇢AXA],

trB[MANB] =MA tr[NB]

which is arguably easier to read.

Example (Warning!). Even if ⇢AB is a pure state, ⇢A can be mixed. For example, consider the
maximally entangled state � �AB =

1
√
2
(�00� + �11�). Then,

⇢AB = � � � �AB =
1

2
(�00� + �11�) (�00� + �11�)

=
1

2
(�00� �00� + �11� �00� + �00� �11� + �11� �11�)

=
1

2
(�0� �0�⊗ �0� �0� + �1� �0�⊗ �1� �0� + �0� �1�⊗ �0� �1� + �1� �1�⊗ �1� �1�) ,

and so, using eq. (3.8),

⇢A = trB[� � � �AB] =
1

2
(�0� �0� + �1� �1�) .

Thus ⇢A is a mixed state – in fact, the maximally mixed state ⌧A introduced previously in example 3.3.
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The preceding example was not an accident. Every pure state � �AB ∈HA ⊗HB has a so-called
Schmidt decomposition

� �AB =�
i

si �ei�A ⊗ �fi�B ,

where si > 0 and the �ei�A and �fi�B are sets of orthonormal vectors in HA and HB, respectively.
Note:

⇢A =�
i

s2i �ei� �ei�A and ⇢B =�
i

s2i �fi� �fi�B .

Thus the eigenvalues of the reduced density matrices are directly related to the cofficients si.
The Schmidt decomposition is a very important tool that we already briefly met in the fine-print of

lecture 1. For one, it helps us to understand entanglement in pure states: E.g., if � �AB = � �A⊗ � �B
is a product state then the reduced density matrices are pure. Conversely, if the reduced density
matrices of a pure state � �AB are mixed then this is a signature of entanglement. You will discuss
this in more detail on problem 2.1. (This also justifies why quantities such as entanglement entropies
that some of you might already know might be good entanglement measures (only) for pure states.)

We mention two last important facts that you will prove in problem 2.2:

(i) Any mixed state ⇢A has a purification: That is, there exists a pure state � AB� ∈ HA ⊗HB,
with HB an auxiliary Hilbert space, such that

⇢A = trB[� AB� � AB �].

Remark. This justifies why in lecture 1 we were allowed to only consider quantum strategies that
involved pure states and observables. At the expense of adding an auxiliary Hilbert space, we can always
replace mixed states by pure states and generalized measurements by measurements of observables
(you proved the latter in problem 1.4).

(ii) If ⇢A = � �A � �A is pure then any extension ⇢AB is necessarily a product, i.e., ⇢AB = ⇢A ⊗ ⇢B –
whether ⇢AB is pure or mixed. We already mentioned this fact when discussing the privacy of
random bits in lecture 1.
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