
PHYSICS 491: Symmetry and Quantum Information April 6, 2017

Measurements, symmetric subspace, pure state estimation
Lecture 2 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Today we will talk about measurements in quantum mechanics and discuss the problem of
estimating an unknown pure state.

2.1 Generalized measurements

From your quantum mechanics class you know that observable in quantum mechanics are modeled
by Hermitian operators X. Let X = ∑x∈Ω xPx denote the spectral decomposition of an observable,
i.e., Px denotes the projector onto the eigenspace corresponding to an eigenvalue x ∈ Ω. Thus we
can repackage X in terms the collection of projections Px, labeled by the possible measurement
outcomes x ∈ Ω. This is convenient for two reasons: First, the probability of outcome x in state ∣ψ⟩
is given by by the Born rule:

Pr(outcome x) = ⟨ψ∣Px∣ψ⟩ , (2.1)

which is naturally expressed in terms of the projections Px. Second, this formalism allows us to
consider more general sets of outcomes Ω that are not necessarily real numbers. Instead of using
observables, we will therefore often prefer to work with the collection of operators {Px}x∈Ω. We
call {Px}x∈Ω a projective measurement. Mathematically, it is specified by operators Px such that (i)
Px ≥ 0, (ii) ∑x Px = 1, and (iii) PxPy = δxyPx.

Can we think of more general measurement schemes? Suppose we couple our system A to an
auxiliary system B that is initialized in a fixed state:

∣ψ⟩ ↦ ∣ψ⟩A ⊗ ∣0⟩B

We then apply an arbitrary projective measurement on the joint system, modelled by some {PAB,x}.
The subscript AB reminds us that we are applying a projective measurement on the full system.
See fig. 2 for illustration. Then the Born rule eq. (2.1) says that

Pr(outcome x) = (⟨ψ∣A ⊗ ⟨0∣B)PAB,x (∣ψ⟩A ⊗ ∣0⟩B) = ⟨ψA∣

⎛
⎜
⎜
⎜
⎝

(1A ⊗ ⟨0∣B)PAB,x (1A ⊗ ∣0⟩B)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶Qx

⎞
⎟
⎟
⎟
⎠

∣ψA⟩ ,

where we have introduce new operators Qx on HA. These operators have the property that (i) Qx ≥ 0
and (ii) ∑xQx = 1A.

We say call any collection of operators {Qx} satisfying (i) and (ii) a generalized measurement or
a POVM measurement (POVM is short for positive-operator valued measure). The Qx are called
POVM elements. As we saw above, the Born rule for POVM measurements takes the familiar form

Pr(outcome x) = ⟨ψ∣Qx∣ψ⟩ . (2.2)
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Figure 2: A generalized measurement implemented by coupling the system A to an auxiliary system
B initialized in a fixed state ∣0⟩B and performing a projective measurement on the joint system.

A binary POVM measurement, i.e., one that has precisely two outcomes, has the form {Q,1 −Q}

and is therefore specified by a single POVM element 0 ≤ Q ≤ 1.

Remark. In problem 1.4, you will show any POVM can be implemented in the fashion described
above. An alternative way of thinking about a POVM measurement is the following: After coupling
to an auxiliary system B, we apply a unitary UAB and then perform a projective measurement on
the auxiliary system. This fits nicely with our intuitive model of measuring a quantum system – we
couple it to an apparatus B, apply an interacting unitary time evolution, and read off the result at
the apparatus.

While eqs. (2.1) and (2.2) look identical, POVM measurements are truely more general than
projective measurements. This is because while the projections Px are necessarily orthogonal,
PxPy = δxyPx, this does not need to be the case for the Qx.

Example. The four operators 1
2 ∣0⟩ ⟨0∣, 1

2 ∣1⟩ ⟨1∣, 1
2 ∣+⟩ ⟨+∣, 1

2 ∣−⟩ ⟨−∣ make up a POVM with four
possible outcomes. It can be thought of performing either a projective measurement in the basis ∣0⟩,∣1⟩
or in the basis ∣+⟩,∣−⟩, with 50% probability each.

Example 2.1. Another example is the POVM that consists of the three (mutually non-orthogonal)
operators {2

3 ∣0⟩ ⟨0∣ , 2
3 ∣α+⟩ ⟨α+∣ , 2

3 ∣α−⟩ ⟨α−∣}, where ∣α±⟩ = 1
2 ∣0⟩ ±

√
3

2 ∣1⟩. Indeed, it is easily verified
that

2

3
∣0⟩ ⟨0∣ +

2

3
∣α+⟩ ⟨α+∣ +

2

3
∣α−⟩ ⟨α−∣ = 1.

Unlike the previous example, this POVM cannot be decomposed in an interesting way.

In problem 1.3 you will study a state discrimination scenario where POVM measurements
outperform projective measurements.

Continuous POVMs

How can we generalize the concept of a POVM measurement to an infinite set of outcomes Ω (e.g.,
the set of all real numbers R, the set of all quantum states, . . . )? Let us assume that the space of
outcomes Ω carries some measure dx. Then the conditions on {Qx}x∈Ω to be a POVM measurement
are as follows, (i) Qx ≥ 0, as before, and (ii) ∫Ω dxQx = 1, and Born’s rule now states that

p(x) = ⟨ψ∣Qx∣ψ⟩
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is now the probability density of the outcome distribution. In other words, probabilities and
expectation values can be computed as follows:

Pr(outcome x ∈ S) = ∫
S
dx ⟨ψ∣Qx∣ψ⟩ ,

E [f(x)] = ∫ dx ⟨ψ∣Qx∣ψ⟩ f(x). (2.3)

We sometimes say that {Qx} is a continuous POVM.

Remark. This is the most general kind of POVM measurement on a finite-dimensional Hilbert
space. In infinite dimensions, one needs a more mathematically sophisticated concept – positive
operator-valued measures – which is where the term “POVM” originated (e.g., Holevo, 2011).

You might be concerned whether we need an infinite-dimensional auxiliary Hilbert space in order
to implement a POVMs with infinitely many outcomes. Interestingly, any continuous POVM on
a finite-dimensional Hilbert space can be implemented by performing a discrete POVM chosen at
random from a continuous probability distribution (Chiribella et al., 2007). This paper could make
for a good course project.

Today’s goal: State estimation

Suppose we are given a quantum system and we would like to learn about the underlying quantum
state ∣ψ⟩. Is there a measurement that gives us a classical description “ψ′′ of the state ∣ψ⟩? Clearly,
this cannot be done perfectly – since otherwise we could first perform this measurement and then
prepare the state from its classical description multiple times, thereby achieving the impossible task
of cloning :

∣ψ⟩ ↦ “ψ′′ ↦ ∣ψ⟩ ⊗ ∣ψ⟩ .

On the other hand, suppose that we are not given just one copy of a state, but in fact many
copies ∣ψ⟩⊗n. Note that ⟨ψ⊗n∣φ⊗n⟩ = ⟨ψ∣φ⟩n, so if two states are not equal then they rapidly become
orthogonal as n becomes large – suggesting that we can distinguish them arbitrarily well. Of course,
since ⟨ψ∣φ⟩ can be arbitrarily close to one this is not yet a completely rigorous argument. But note
that in this case the states are essentially the same, and so we make only a small error by conflating
them. Thus it seems plausible that we can achieve the following task, known as pure state estimation:

We want to design a continuous POVM {Qψ̂} on (Cd)⊗n, labeled by the pure states on Cd, such
when we measure on ∣ψ⟩⊗n we obtain an outcome ψ̂ that is “close” to ψ (on average, or even with
high probability).

To solve this problem and come up with a good measurement for estimating pure states, we need
to talk about the symmetries inherent in this problem: If ∣ψ⟩ ∈ Cd then not only is ∣ψ⟩⊗n ∈ (Cd)⊗n,
but ∣ψ⟩⊗n is invariant under permuting the subsystems. Let’s make this a bit more precise.

2.2 Symmetric subspace

Let Sn denote the symmetric group on n symbols. Its elements are permutations π∶ {1, . . . , n} →
{1, . . . , n}. Thus, Sn has n! elements. This is a group, meaning that products and inverses are again
contained in Sn. For any π ∈ Sn, we can define an operator Rπ on the n-fold tensor power (Cd)⊗n in
the following way:

Rπ ∣ψ1⟩ ⊗ . . .⊗ ∣ψn⟩ = ∣ψπ−1(1)⟩ ⊗ . . .⊗ ∣ψπ−1(n)⟩
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It is clear that
R1 = 1, RτRπ = Rτπ (2.4)

Indeed, the latter is guaranteed by our judicious use of inverses:

RτRπ ∣ψ1⟩ ⊗ . . .⊗ ∣ψn⟩ = Rτ ∣ψπ−1(1)⟩ ⊗ . . .⊗ ∣ψπ−1(n)⟩

= Rτ ∣ψπ−1(1)⟩ ⊗ . . .⊗ ∣ψπ−1(n)⟩

= ∣ψπ−1(τ−1(1))⟩ ⊗ . . .⊗ ∣ψπ−1(τ−1(n))⟩

= ∣ψ(τπ)−1(1)⟩ ⊗ . . .⊗ ∣ψ(τπ)−1(n)⟩

= Rτπ ∣ψ1⟩ ⊗ . . .⊗ ∣ψn⟩ .

Equation (2.4) says that the map π ↦ Rπ turns (Cd)⊗n into a representation of the symmetric group
Sn.

Let us return to the vectors ∣ψ⟩⊗n. Clearly, they have the property that Rπ ∣ψ⟩⊗n = ∣ψ⟩⊗n for all
π. That is, ∣ψ⟩⊗n are elements of the symmetric subspace

Symn
(Cd) = {∣Φ⟩ ∈ (Cd)⊗n ∶ Rπ ∣Φ⟩ = ∣Φ⟩}.

The symmetric subspace is also known as the n-particle sector of the bosonic Fock space for d modes.
Given an arbitrary vector ∣Φ⟩ ∈ (Cd)⊗n, we can always symmetrize it to obtain a vector in the

symmetric subspace. Indeed, let us define the symmetrizer

Πn =
1

n!
∑
π∈Sn

Rπ

This operator is the projector on the symmetric subspace. Let’s verify this: (i) If ∣Φ⟩ is in the
symmetric subspace then Πn ∣Φ⟩ = ∣Φ⟩:

Πn ∣Φ⟩ =
1

n!
∑
π∈Sn

Rπ ∣Φ⟩ =
1

n!
∑
π∈Sn

∣Φ⟩ = ∣Φ⟩ .

(ii) For any vector ∣Φ⟩ ∈ (Cd)⊗n, the vector ∣Φ̃⟩ = Πn ∣Φ⟩ is in the symmetric subspace:

Rτ ∣Φ̃⟩ = Rτ(Πn ∣Φ⟩) = Rτ
1

n!
∑
π∈Sn

Rπ ∣Φ⟩ =
1

n!
∑
π∈Sn

Rτπ ∣Φ⟩ =
1

n!
∑
π′∈Sn

Rπ′ ∣Φ⟩ = Πn ∣Φ⟩ = ∣Φ̃⟩ .

Here, we used that as π ranges over all permutations, so does π′ = τπ (indeed, we obtain any π′

exactly from π = τ−1π′).
In particular, we can obtain a basis of the symmetric subspace by taking a basis ∣i⟩ of Cd,

considering a tensor product basis element ∣i1, . . . , in⟩, and symmetrizing. The result does not depend
on the order of the elements, but only on the number of times ti = #{ik = i − 1}. Thus Symn(Cd)
has the occupation number basis

∥t1, . . . , td⟫ ∝ Πn(∣1⟩
⊗t1 ⊗ . . .⊗ ∣d⟩⊗td), (2.5)

where ti ≥ 0 and ∑i ti = n.
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Example (n=2,d=2). A basis of Sym2(C2) is given by

∥2,0⟫ = ∣00⟩ , ∥1,1⟫ =
1

√
2
(∣10⟩ + ∣01⟩) , ∥0,2⟫ = ∣11⟩ .

Note that we can complete this to a basis of C2 ⊗ C2 by adding the antisymmetric singlet state
(∣10⟩ − ∣01⟩)/

√
2. It is true more generally that (Cd)⊗2 = Sym2(Cd) ⊕⋀2(Cd).

In general, there are (
n+d−1
n

) such basis vectors and therefore

dim Symn
(Cd) = tr Πn = (

n + d − 1

n
) =

(n + d − 1)!

n!(d − 1)!
.

A resolution of the identity for the symmetric subspace

The reason why we studied the symmetric subspace is that it contains the states ∣ψ⟩⊗n that arise in
our estimation problem. Not every vector in Symn(Cd) is of this form – for example, 1√

2
(∣01⟩ + ∣10⟩)

isn’t. Moreover, the ∣ψ⟩⊗n are not orthogonal. Nevertheless, we have the following alternative
formula for the projection onto the symmetric subspace:

Π′
n = (

n + d − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ∣⊗n . (2.6)

The integral requires some explanation: We integrate over all unit vectors ∣ψ⟩ ∈ Cd, and the measure
dψ is the unique probability measure that is invariant under the unitary group U(d). That is,
expectation values do not change when we substitute ∣ψ⟩ ↦ U ∣ψ⟩, where U is a unitary d × d matrix.
Sometimes this measure is called the Haar measure. (Concretely, we can think of the ∣ψ⟩ as unit
vectors in S2d−1 and the Haar measure can be realized as the unique rotation invariant measure on
that sphere.) (Mathematically speaking, I am somewhat conflating the vectors ∣ψ⟩ and the pure
states ∣ψ⟩ ⟨ψ∣ – but if this concerns you then you know how to fix it!) For example, the invariance
property immediately implies the following:

Π′
n = U

⊗nΠ′
nU

†,⊗n, or U⊗nΠ′
n = Π′

nU
⊗n (2.7)

One way of interpreting eq. (2.6) is that the vectors ∣ψ⟩⊗n form an “overcomplete basis” of the
symmetric subspace. Indeed, if ∣Φ⟩ is an arbitrary vector then

∣Φ⟩ = Πn ∣Φ⟩ = (
d + n − 1

n
)∫ dψ ∣ψ⟩⊗n ⟨ψ⊗n∣Ψ⟩ = ∫ dψ cψ(Ψ) ∣ψ⟩⊗n ,

where cψ(Ψ) = (
d+n−1
n

) ⟨ψ⊗n∥Ψ⟩. This means that we can write ∣Φ⟩ as a linear combination of the
states ∣ψ⟩⊗n.

Another way to interpret eq. (2.6), though, is that it shows that

Qψ̂ = (
d + n − 1

n
) ∣ψ̂⟩

⊗n
⟨ψ̂∣

⊗n
(2.8)

defines a continuous POVM {Qψ̂} on the symmetric subspace! It is this so-called uniform POVM
that we will use to solve our estimation problem!
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2.3 Pure state estimation

We will now solve the problem of pure state estimation (cf. Chiribella, 2010, Brandao et al., 2016,
Harrow, 2013). Recall that we are given n copies of some ∣ψ⟩⊗n. To obtain a good estimate, we want
to measure the uniform POVM (2.8).

How do we quantify the goodness of this strategy? There are several options, but the one that is
most natural in the present context is to consider the overlap squared, ∣⟨ψ∣ψ̂⟩∣2, between estimate
and true state. We will in fact look at a slightly more general figure of merit, namely ∣⟨ψ∣ψ̂⟩∣2k for
some fixed k > 0, since this is just as easy and we will use it in Tuesday’s lecture.

Remark. If k > 1 then this is a more stringent figure of merit since unequal states become more
orthogonal in this way: ∣⟨ψ∣ψ̂⟩∣2k < ∣⟨ψ∣ψ̂⟩∣2.

Remark. The overlap has a good operational meaning: In problem 1.2, you will show that two quan-
tum states with overlap close to one are indeed almost indistinguishable by any possible measurement.

Let us compute the expected value of ∣⟨ψ∣ψ̂⟩∣2k (the average is over the measurement outcome
ψ̂):

E [∣⟨ψ∣ψ̂⟩∣2k] = ∫ dψ̂ ⟨ψ⊗n∣Qψ̂ ∣ψ
⊗n

⟩ ∣⟨ψ∣ψ̂⟩∣2k

= (
n + d − 1

n
)∫ dψ̂ ∣⟨ψ∣ψ̂⟩∣2(k+n)

= (
n + d − 1

n
) ⟨ψ⊗(k+n)

∣ (∫ dψ̂ ∣ψ̂⟩
⊗(k+n)

⟨ψ̂∣
⊗(k+n)

) ∣ψ⊗(k+n)
⟩

= (
n + d − 1

n
)(
n + k + d − 1

n + k
)

−1

⟨ψ⊗(k+n)
∣Πn+k∣ψ

⊗(k+n)
⟩

= (
n + d − 1

n
)(
n + k + d − 1

n + k
)

−1

=
(n + d − 1)!

n!

(n + k)!

(n + k + d − 1)!
=

(n + d − 1) . . . (n + 1)

(n + k + d − 1) . . . (n + k + 1)

≥ (
n + 1

n + k + 1
)
d−1

= (1 −
k

n + k + 1
)

d−1

≥ 1 −
k(d − 1)

n + k + 1
≥ 1 −

kd

n
.

(2.9)

The first equality holds because ⟨ψ⊗n∣Qψ̂ ∣ψ
⊗n⟩ is the probability density of the measurement outcome

ψ̂, as we know from eq. (2.3). For the second equality, we plugged in the definition of the POVM
element eq. (2.8). The third is just some simple manipulation using linearity of the integral, and the
fourth follows by plugging in the formula for the projector onto the symmetric subspace Symn+k(Cd).
The rest are some simple inequalities that I explained in class.

Success! We have shown that the uniform POVM (2.8) gives us a very good estimate of ∣ψ⟩ as
soon as n≫ d (if we measure its goodness by the overlap squared, corresponding to k = 1).

Remark. Later in this course we will learn how to go beyond the symmetric subspace and solve the
state estimation problem for general, not necessarily pure quantum states (lecture 7).
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