PHYSICS 491: Symmetry and Quantum Information April 4, 2017

Quantum correlations, non-local games, rigidity
Lecture 1 Michael Walter, Stanford University

These lecture notes are not proof-read and are offered for your convenience only. They include
additional detail and references to supplementary reading material. I would be grateful if you email
me about any mistakes and typos that you find.

Quantum mechanics can seem quite strange at times! We have phenomena such as superpositions
(I+) = (J0) + [1))/1/2), entanglement (|p) 45 # |#) 4 ® |¢) g), incompatible measurements ([X,Y] # 0),
etc. This “strangeness” manifests itself through the correlations predicted by quantum mechanics.
A modern perspective of studying and comparing correlations is through the notions of a nonlocal
game. You have met nonlocal games already in Physics 230, but we will discuss some interesting
new aspects that you may not have seen before.

1.1 Nonlocal games

In a nonlocal game, we imagine that a number of players play against a referee. The referee hands
them questions and the players reply with appropriate answers that win them the game. The players’
goal is to collaborate and maximize their chances of winning. Before the game, the players meet
and may agree upon a joint strategy — but then they move far apart from each other and cannot
communicate with each other while the game is being played (this can be ensured by the laws of
special relativity). The point then is the following: Since the players are constrained by the laws of
physics, we can concoct games where players utilizing a quantum strategy may have an advantage.
This way of reasoning about quantum correlations is eminently operational and quantitative, as we
will see in the following.

The GHZ (Greenberger-Horne-Zeilinger) game is a famous example of a nonlocal game due to
Mermin| (1990); cf. |Greenberger et al.| (1990). Figure [1|illustrates the setup of the GHZ game. It
involves three players — Alice, Bob, and Charlie. Each receives as questions a bit x,y,z € {0,1} and
their answers are likewise bits a,b,c € {0,1}. They win the game if the sum of their answers modulo
2 is as follows:

Ty z‘a@b@c
0 0 0 0
1 1 0 1
1 0 1 1
0 1 1 1

Note that not all bit strings zyz are questions that the referee asks. The winning condition can be
succintly stated as follows: a®@b@®c=xvyvz. We write & for addition modulo 2 and v for the
logical OR. Those of you that have taken the Physics 230 final are already familiar with the rules of
this game.
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Figure 1: Setup of the three-player GHZ game. The winning condition is that a@b®c=xVvyvVv z.

Classical strategies

It is easy to see that the GHZ game cannot be won if the players’ strategies are described by a “local”
and “realistic” theory. As in Physics 230, “local” means that each player’s answer does only depend
on its immediate surroundings, and “realistic” means that the theory must assign a pre-existing
value to every possible measurement before the measurement is made. In our case, “measurements”
correspond to “questions” and “outcomes” to “answers”. Thus in a local and realistic theory we

assume that
a=a(x), b=0b(y), c=c(z).

When we say that the players may jointly agree on a strategy before the game is being played, we
mean that they may select “question-answer functions” a, b, ¢ in a correlated way. For example, when
the players meet before the game is being played, they could flip a coin, resulting in some random
A €{0,1}, and agree on the strategy a(z) =z @ A, b(y) =y ® A, c(z) = z® A. Thus, in mathematical
terms, the functions a,b,c can be correlated random variables. Equivalently, we could say that A is a
“hidden variable”, with some probability distribution py(0) = px(1) = 1/2, and consider a = a(xz, \)
as a deterministic function of both the input and the hidden variable. You will discuss this point
of view in problem [I.1] If the players strategy can be described by classical mechanics then the
above would provide an adequate model. Thus, strategies of this form are usually referred to as local
hidden variable strategies or simply as classical strategies.

Suppose now for sake of finding a contradiction that Alice, Bob, and Charlie can win the GHZ
game perfectly. Then,

l1=0sleoelel
=(a(0)@b(0)@c(0))@®(a(l)db(l)dc(0))® (a(l)db(0)dc(l)) @ (a(0)db(l) (1)) =0.

The last equality holds because a(z) ® a(z) = 0 etc., whatever the value of a(z). This is a
contradiction! We conclude that there is no perfect classical winning variable strategy for the GHZ
game. Suppose, e.g., that the referee selects each possible question zyz with equal probability 1/4.
Then the game can be won with probability at most

DPwin,cl = 3/4
This winning probability can be achieved by, e.g., the trivial strategy a(z) = b(y) = ¢(z) = 1.

Quantum strategies

In a quantum strategy, we imagine that the three players are described by quantum mechanics. Thus
they start out by sharing an arbitrary joint state [¢)) 45 € Ha ® Hp ® Hc, where H 4 is the Hilbert



space describing a quantum system in Alice’ possession, etc., and upon receiving their questions
x,y,%z € {0,1} they will measure corresponding observables A;, B,, C, on their respective Hilbert
spaces. While it might not be immediately obvious, any classical strategy is also a quantum strategy,
as you will show in problem [L.1]

It will be convenient to take the eigenvalues (i.e., measurement outcomes) of the observables to be
in {1} rather than in {0,1}. Provided the outcome of Alice’s measurement of A, is (—1)¢, she sends
back a as the answer, etc. In this case, the eigenvalues of A, ® B, ®C, are (—1)**0%¢ = (-1)a®0®¢ that
is, they correspond precisely to the the sum modulo two of the answers. Thus, a perfect quantum
strategy is one where

(Ao ® Bo® Co) [¥) apc = + V) apc s

(A1© B1®Co) [Y) apc = — V) apc s

(A1® Bo® C1) [¥) apc = — V) apc s

(Ao ® B1®C1) [¥) gpc = — 1) ape s
In problem you will verify that, more generally,

(1.1)

1 1
Pwing =5+ ¢ (YapclAo® By® Cy-—A1®@B1®Cyp— A1 ® By®Ci - Ay ® B1 ® Ci|YaBc)

is the probability of winning the GHZ game (for uniform choice of questions zyz).

Remarkably, there is a quantum strategy for the GHZ game that allows the players to win the
game every single time (i.e., Pwin,q = 1). Following Watrous| (2006)), the players share the three-qubit
state

D) apo = % (J000) - [110) - [101) — [011)) e C? ® C? ® C?, (1.2)

where we imagine that the first qubit is in Alice’s possession, the second in Bob’s, and the third in
Charlie’s. Upon receiving = = 0, Alice measures the observable Ay = Z = (} %) on her qubit, while
upon receiving x = 1 she measures the observable A; = X = ({}). Bob and Charlie perform exactly
the same strategy on their qubits. To see that this quantum strategy wins the GHZ game every
single time, we only need to verify . Indeed:

(2020 Z)|0) spc =) apc
1
(X®X ®2)I) 4 = 5 (1110) ~[000) - (1) 011) = (~1) [101)) = [} 1 -

This shows that in a precise quantitative sense, quantum mechanics enables much stronger
“non-local correlations” than what is possible using a local realistic theory.

Exercise. This looks different from what you remember from the Physics 230 exam! It is a fun
ezercise to relate the strategy above to the one you remember from the Physics 230 exam.

Device-independent quantum cryptography

When the three players perform the optimal strategy described above then not only do their answers
satisfy the winning condition but their answers are in fact completely random, subject only to the
constraint that a ® b ® ¢ must sum to the desired value z v y v z. In particular, a,b € {0,1} are
two independent random bits. You can easily verify this by inspection: E.g., for x =y = z = 0,



Alice, Bob, and Charlie each measure their local Z observable. The eigenvectors are |abc) and so
it is clear from eq. that we obtain abc € {000,110,101,011} with equal probability 1/4. The
randomness obtained in this way is also private in the following sense: Suppose that apart from
Alice, Bob, Charlie, there is also an evil eavesdropper (Evan) who would like to learn about the
random bits generated in this way. Their joint state will be described by a pure state |¢) 4 pop (We
may assume that this is a pure state — just hand all other systems to the eavesdropper; this will only
give him more power). If Alice, Bob, and Charlie indeed share the state in eq. (or for that
matter any pure state) then it must be the case that V) ypop = T') apc ® [¥0) 5. You will show this
in problem This means that Evan is completely decoupled from Alice, Bob and Charlie’s state,
and it follows that the random bits a and b are completely uncorrelated from the E system. All
these means that the players’ answers can be used to generate private randomess — the referee simply
locks Alice, Bob, and Charlie (best thought of as quantum devices) into his laboratory, ensures that
they cannot communicate, and interrogates them with questions. But of course, the referee cannot
in general trust Alice, Bob, and Charlie to actually play the strategy above! So this observation
might seem not very useful at first glance. ..

However, what if the optimal strategy for winning the GHZ game was actually unique? In this
case, the referee could test Alice, Bob, and Charlie with randomly selected questions and check that
they pass the test every time. After a while, the referee might be confident that the players are
in fact able to win the GHZ game every time. But then, by uniqueness of the winning strategy,
the referee should in fact know the precise strategy that Alice, Bob, and Charlie are pursuing! The
referee in this case would not have to put any trust in Alice, Bob, Charlie — they would prove their
worth by winning the GHZ game every time around. This remarkable idea for generating private
random bits was first proposed by |Colbeck (2009). (Note that we need private random bits in the
first place to generate the random questions — thus this protocol proposes to achieve a task known as
randomness expansion. Private random bits cannot be generated without an initial seed of random
bits.) The argument sketched so far is of course not rigorous at all: ignoring questions of robustness,
we need to take into account that Alice, Bob, Charlie may not behave the same way every time we
play the game, may have a (quantum) memory, etc.

However, these challenges can be circumvented and secure randomness expansion protocols using
completely untrusted devices do exist (see, e.g., Miller and Shi (2014) and the review |Acin and
Masanes (2016))! This general line of research is known as device-independent quantum cryptography
(Mayers and Yao, |1998), since it does not rely on assumptions on the inner workings of the devices
involved, but only on their observed correlations. Other applications of include device-independent
quantum key distribution (Vazirani and Vidick, [2014) and the command of an adversarial quantum
system (Reichardt et al., 2013).

1.2 Rigidity of the GHZ game

For the remainder of the lecture, we will content ourselves with showing that the winning strategy
for the GHZ game is indeed essentially unique (Colbeck and Kent, 2011). We say that the GHZ
game is rigid — or that it is a self-test for the state (|1.2)).

Remark. The CHSH game which you might remember from Physics 230 is likewise rigid; see
Tsirel’son| (1987), \Summers and Werner| (1987), |Popescu and Rohrlich, (1992), |McKague et al.
(2012), Reichardt et al| (2013). (Here, optimal quantum winning probability is 1/2 + 1/2v/2 < 1!)
Robust rigidity results for general XOR games are contained in|Slofstra (2011), |Miller and Shi (2013),



Ostrev (2015). Rigidity is also closely related to the question of how much entanglement is needed to
win a nonlocal game (e.g., |Slofstra, |2011). Surveying some of these results would make for great (but
challenging) course projects.

To prove the rigidity result, we first observe that in the three-qubit strategy discussed above, the
state [I') 4 5 is already uniquely determined by the measurement operators: Indeed, any eigenvector
of Z® Z® Z is necessarily of the form « [000)+3]110)+~]101)+§|011), and the other three conditions
are only satisfied if « = -3 = —y =-§ = 1/2, up to overall phase.

Let us now consider a general optimal strategy given by operators A;, By, C. with A2 =1 etc.
and a state |¢) 4o € Ha ® Hp ® He such that eq. are satisfied. The basic strategy to prove
the rigidity theorem will be to uncover some hidden symmetries in the problem to reduce to the case
of three qubits:

Claim 1.1. In any optimal strategy, the observables must anticommute: “{Ag, A1} =0, {Bo,B1} =0,
{Cy,C1} =07 (see below for fine-print).

We will prove this claim later, but let us see first see how this allows us to identify three qubits.

How to find a qubit?

Consider, e.g., the pair of observables Ay, Aj. They satisfy A2 = A2 =1 and {Ag, A1} = 0. Hence,
Ay = —%[Ao, Al] = —jAgA1 = 1A Ap is such that

[A1, Ag] = A1 Ay — Ag Ay =iA1 A1 Ag +1AgA1 Ay = 2i Ay,

and similarly [Asg, Ag] = 2¢A;. This means that Ay, A, Ay transform like the Pauli matrices XY, Z!
It follows that the Hilbert space decomposes into irreducible representations of SU(2):
Ha=VyoVyeo= @ Volw,
§=0,1/2,1,...
where m; counts the number of times the spin-j representation V; appears in H 4. We claim that,
since {Ag, A1} = 0, this representation of SU(2) has to be j = 1/2! Indeed, A2 = —iAgA1iA;Ag =1
and so 1 3 1.1
S(A2+ A%+ A== (=+1
4( 0+ AT+ A43) 1 2(2+ )
acts by a scalar. Comparing with j(j + 1) we find that j = 1/2 (cf. remark .
Therefore, H 4 = C? ® H s, where H s is some auxiliary Hilbert space of dimension m; /2, and
Ap, A1 act by
Z®1l,X®l.

Exercise. Can you find an argument that avoids using the representation theory of SU(2)?

The same argument works for Bob and Charlie’s pairs of observables. Thus the total Hilbert
space decomposes as

Ha@HHe 2 (CP°@C*0C?) @ (Ha ® Hp ® Her)
and the measurement operators act as in the three-qubit solution. We saw above that in the
three-qubit solution the state is uniquely determined by the measurement operators. Thus,
W) apc =LY M aper
where |I') is the three-qubit state from eq. (1.2) and |y) 4 g/ some auxiliary state (which is irrelevant
because the observables do not act on it). This is the desired rigidity result.



Anticommutations from correlations (proof of the claim)

We first note that the optimality condition eq. (|1.1)) can be written as

Ao|¢) = +BoCo [¢)
Ao [pp) = =B1C1 )
Arp) = =B1Co |¢)
A1 [pp) = =BoC1[) .

Here and in the following we write Ag instead of Ag® 1 ® 1 to make the formulas more transparent.
From the first two and last two equations, respectively,

Aoly) = +3 (BCo - B1C1) 1)
Arl) = —% (B1Co + BoCh) )

Hence,

1 1
ApAy ) = 1 (B1Co + BoCh) (BoCo — B1Ch) ) = 1 (B1By — CoCy + C1Cy — BoB1) |¢) ,

1 1
A1 Aglp) = 1 (BoCo - B1C1) (B1Co + BoCh) ) = 1 (BoB1 — C1Cy + CoC1 — B1By) |¢)

and so
{Ao, A1} ) = 0.

How can we show that {Ag, A1} =07
This is in fact not exactly true — hence the “quotes” in claim But what is true is that
{Aop, A1} =0 on a subspace H4 of H such that [¢) ;5 € Ha ® Hp ® Hc. Indeed, we can expand

) apc = ZSi lei) 4 ® | fi) 5o

7

where the |e;) and |f;) are orthonormal and s; > 0. If there are dimH 4 terms then the |e;) form a
complete basis of H4 and so {Ap, A1} [¢)) = 0 implies that {Ag, A1} =0. Otherwise, we can restrict
to the subspace H 4 := span{|e;) 4} — this is called the Schmidt decomposition and we will discuss it
in more detail in a future lecture. In the latter case, [¢) 4o € Ha®Hp ® He, the operators A, are
block diagonal with respect to Ha® ﬂé, and {Ap, A1} =0on H 4. We can proceed likewise for B,
and C,.

Statement of the rigidity theorem

What have we proved? In mathematical terms, we have established the following theorem:

Theorem 1.2 (Rigidity for the GHZ game). Consider an optimal strateqy for the GHZ game given
by operators A, By, C, with A?E =14 etc. and a state |¢)) 45 € Ha ® Hp ® Ho. Then there exist
isometries Va:C2 @ Har — Ha, V:C2 @ Hp » Hp, Vo C?> @ Her - He such that

(i) V) age = (Va® V@ Ve)(|T) ®|y)) for some |y) e Har @ Hpr @ H'C.

10



(i1) VXAOVA =Z® 1, VXAﬂ/A =X ® 14, and similarly for By and C..

In the coming lectures, we will revisit many of the techniques used above in a more systematic
way. I would suggest that you come back to this lecture at the end of the term — at this point you
should be well equipped to write up a complete proof of theorem [I.2]

Outlook

There are many further aspects of nonlocal games related to what we discussed in this lecture. For
example, how do winning probabilities and optimal strategies behave when one plays many instances
of a game — either in multiple rounds (sequentially) or even at the same time (in parallel)? It
is clear that if p is the optimal winning probability for a single instance then for n instances the
winning probability is at least p™ — but we might be able to do better by using strategies that exploit
correlations or entanglement in a clever way! Indeed, the maximal classical winning probability for a
single instance of the CHSH game is 3/4 — while for two instances it is 10/16 > 9/16 = (3/4)? (Barrett
et al., |2002)). On the other hand, it is proved in Cleve et al.| (2007) not only for the CHSH game but
for arbitrary XOR games (games where the winning condition only depends on the sum modulo two
of the answers, a®@ b @ ...) that the optimal quantum winning probability for n instances is equal to
p™ — this is known as a perfect parallel repetition theorem. Surveying some of the papers in this area
could also make for a good course project.
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