
Introduction to Information Theory, Fall 2019
Practice problem set #9

You do not have to hand in these exercises, they are for your practice only.

1. Finite fields Fq: In class, we discussed Fq = {0, 1, . . . , q − 1}, where q is a prime and
addition and multiplication is done modulo q.

F2 is just a bit with addition modulo 2 (XOR) and the usual multiplication:
1⊕1 = 0, 1×1 = 1 etc. In mathematics, Fq is called a finite ‘field’ with q elements.

In Fq, any nonzero number has a multiplicative inverse, i.e., if x 6= 0 is in Fq then there
exists a unique element y in Fq such that xy = yx = 1 (all arithmetic is done modulo q).
We usually write x−1 for this element y and call it the inverse of x. For example, 2−1 = 2

in F3, since 2× 2 = 4 (mod 3) = 1.

(a) Write down all nonzero elements of F7 and find their inverses.

In class, we said that an element α ∈ Fq is called a generator (or ‘primitive element’) if
{α,α2, . . . , αq−1} runs over all nonzero numbers in Fq. Generators exist for any prime q.

(b) Find all generators of F7.

Remark: The restriction to prime numbers is important. Otherwise, inverses and generators do not
necessarily exist.

2. Dividing polynomials: Just like we can divide integers by each other when we are happy
with leaving a remainder, we can divide any two polynomials with remainder. That is, given
two polynomials A and B, where B 6= 0, there are unique polynomials Q and R such that

A = QB+ R,

and the degree of R is less than the degree of B. We will call Q the quotient and R the
remainder, and write R = A mod B. You can compute Q and R in completely the same way
how you do ‘long division’ between integers to figure out their quotient and remainder:

Q <- 0
R <- A
while R and degree(R) >= degree(B):
d <- degree(R) - degree(B)
L <- leading_coeff(R) leading_coeff(B)^{-1} * X^d
Q <- Q + L
R <- R - L B

Here, the leading coefficient of a polynomial P = p0 + p1X+ · · ·+ pdXd of degree d is pd.
That is, we start with A and repeatedly subtract a suitable multiple of B such that the
degree decreases. This algorithm works not only for polynomials whose coefficients are real
numbers, but also when the coefficients are in Fq.

(a) Compute the quotient and remainder for the following polynomials with coefficients
in F3: A = X3 + 1 and B = 2X.

1



(b) Compute the quotient and remainder for the following polynomials with coefficients
in F5: A = X3 + 2X and B = X+ 4.

3. Reed-Solomon encoding: Consider the Reed-Solomon code with parameters q = 7, N = 4,
K = 2, and α = 3.

(a) Compute the generator polynomial G.
(b) Write down the codeword [x1, x2, x3, x4] for a general message [s1, s2] ∈ F2

7.

4. Decoding erasure errors: Imagine that a codeword xN for a Reed-Solomon code is corrupted
by C many erasure errors. That is, yN differs from xN at C locations and you know what
these locations are. If C 6 T = N − K, how can you decode the codeword? If this seems
hard do not despair – we will discuss this on Thursday in class!
Hint: Think of xN and yN as coefficients of polynomialsM and R. Then decoding is equivalent to
figuring out the error polynomial E = R −M, which has C unknown coefficients. Observe that
E(α) = R(α), . . . , E(αT ) = R(αT ). Why does this help?

2


