Introduction to Information Theory, Fall 2019

Practice problem set #9

You do **not** have to hand in these exercises, they are for your practice only.

1. Finite fields \mathbb{F}_q : In class, we discussed $\mathbb{F}_q = \{0, 1, \dots, q-1\}$, where q is a prime and addition and multiplication is done modulo q.

```
\mathbb{F}_2 is just a bit with addition modulo 2 (XOR) and the usual multiplication: 1 \oplus 1 = 0, 1 \times 1 = 1 etc. In mathematics, \mathbb{F}_q is called a finite 'field' with q elements.
```

In \mathbb{F}_q , any nonzero number has a multiplicative inverse, i.e., if $x \neq 0$ is in \mathbb{F}_q then there exists a unique element y in \mathbb{F}_q such that xy = yx = 1 (all arithmetic is done modulo q). We usually write x^{-1} for this element y and call it the *inverse of* x. For example, $2^{-1} = 2$ in \mathbb{F}_3 , since $2 \times 2 = 4 \pmod{3} = 1$.

(a) Write down all nonzero elements of \mathbb{F}_7 and find their inverses.

In class, we said that an element $\alpha \in \mathbb{F}_q$ is called a *generator* (or 'primitive element') if $\{\alpha,\alpha^2,\ldots,\alpha^{q-1}\}$ runs over all nonzero numbers in \mathbb{F}_q . Generators exist for any prime q.

(b) Find all generators of \mathbb{F}_7 .

Remark: The restriction to prime numbers is important. Otherwise, inverses and generators do not necessarily exist.

2. **Dividing polynomials:** Just like we can divide integers by each other when we are happy with leaving a remainder, we can divide any two polynomials with remainder. That is, given two polynomials A and B, where $B \neq 0$, there are unique polynomials Q and R such that

$$A = QB + R$$

and the degree of R is less than the degree of B. We will call Q the *quotient* and R the *remainder*, and write $R = A \mod B$. You can compute Q and R in completely the same way how you do 'long division' between integers to figure out their quotient and remainder:

```
Q <- 0
R <- A
while R and degree(R) >= degree(B):
    d <- degree(R) - degree(B)
    L <- leading_coeff(R) leading_coeff(B)^{-1} * X^d
    Q <- Q + L
    R <- R - L B</pre>
```

Here, the leading coefficient of a polynomial $P = p_0 + p_1 X + \cdots + p_d X^d$ of degree d is p_d . That is, we start with A and repeatedly subtract a suitable multiple of B such that the degree decreases. This algorithm works not only for polynomials whose coefficients are real numbers, but also when the coefficients are in \mathbb{F}_q .

(a) Compute the quotient and remainder for the following polynomials with coefficients in \mathbb{F}_3 : $A = X^3 + 1$ and B = 2X.

- (b) Compute the quotient and remainder for the following polynomials with coefficients in \mathbb{F}_5 : $A = X^3 + 2X$ and B = X + 4.
- 3. **Reed-Solomon encoding:** Consider the Reed-Solomon code with parameters q=7, N=4, K=2, and $\alpha=3$.
 - (a) Compute the generator polynomial G.
 - (b) Write down the codeword $[x_1, x_2, x_3, x_4]$ for a general message $[s_1, s_2] \in \mathbb{F}_7^2$.
- 4. **Decoding erasure errors:** Imagine that a codeword x^N for a Reed-Solomon code is corrupted by C many *erasure errors*. That is, y^N differs from x^N at C locations and you know what these locations are. If $C \le T = N K$, how can you decode the codeword? If this seems hard do not despair we will discuss this on Thursday in class!

Hint: Think of x^N and y^N as coefficients of polynomials M and R. Then decoding is equivalent to figuring out the error polynomial E = R - M, which has C unknown coefficients. Observe that $E(\alpha) = R(\alpha), \ldots, E(\alpha^T) = R(\alpha^T)$. Why does this help?