
Introduction to Information Theory, Fall 2019

Practice problem set #5

You do not have to hand in these exercises, they are for your practice only.

1. Shannon-Fano-Elias code and arithmetic coding

(a) Show that if you follow Algorithm 6.3 in MacKay (which is the algorithm from the

lecture without step 2), and then compute the binary expansion of
u+v
2 of length

dlog( 2p)e you obtain the Shannon-Fano-Elias code.

(b) Remark that when applying Shannon-Fano-Elias coding to XN
for large N, you will

probably need high-precision arithmetic for computing dlog( 2
P(x))e. How can you

avoid this?

2. Language models: k-grams

(a) Let k > 1. We want to consider a language model, called the k-gram model, where the

probability of a letter depends on the previous k− 1 letters only. To make this formal,

for k = 1 we would assume that P(xn|x1 . . . xn−1) = P(xn). For k > 1 we assume

that P(xn|x1 . . . xn−1) = P(xn|xn−k+1 . . . xn−1). We assume that these conditional

probabilities are the same for each n. The k = 1 case thus corresponds to the IID case.

Explain how to estimate these probabilities from the string xN for large N.

(b) Now imagine a language which consists of all English words, and which is such that

the probability of a word only depends on the previous word, with the probabilities as

in ‘real’ English. Think about how to sample from this language by hand only using a

book (representative for the English language).

3. Learning on the fly For a streaming algorithm, you usually do not want to estimate the

language model by looking at the whole string xN, but rather learn them ‘on the fly’ as you

are going through the message. In this exercise we will use Bayes rule to derive one such

procedure for an IID source with unknown initial probabilities.

(a) Suppose that we have an IID source X on an alphabet {a, b}, but we do not know the

probabilities P(a) = pa, P(b) = pb = 1− pa. Show that if we assume a uniform prior

on pa (so with probability density1 P(pa) = 1 for pa ∈ [0, 1]) and observe xN with Na
times a and Nb times b, then Bayes rule tells use that

P(pa|x
N) =

pNa
a (1− pa)

Nb

P(xN)

where

P(xN) =

∫1
0

P(xN|pa)P(pa)dpa

=

∫1
0

pNa
a (1− pa)

Nb
dpa.

1Wewill have to use a continuous version of Bayes rule here, where sums are replaced by integrals and probabilities

by probability densities (which we didn’t discuss and you don’t have to know this for the exam).
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(b) Use the fact that ∫1
0

pNa
a (1− pa)

Nb
dpa =

Na!Nb!

(Na +Nb + 2)

and the previous question to show that

P(a|xN) =

∫
P(a|pa)P(pa|x

N)dpa

=
Na + 1

Na +Nb + 2
.

This is known as Laplace’s rule.

(c) Explain how to use Laplace’s rule for arithmetic coding.

Notice that the rule we have derived depends on the prior! If we would have taken another

prior we would have obtained different results.

4. Decompressing arithmetic codes

(a) In Algorithm 1 a naive decompression algorithm is described. The inputs are the

bitstring b = b1b2 . . . and the length N of the source string xN. We denote by A

the (ordered) alphabet of the source, by Q(xn|x1, . . . , xn−1) and R(xn|x1, . . . , xn−1)
the cumulative conditional probabilities, and by 0.b = 0.b1b2 . . . the number in [0, 1)
whose binary expansion is given by the bitstring b (followed by infinitely many zeros).

Argue that this algorithm decompresses correctly.

(b) Can you make a ‘streaming’ version of the decompression algorithm?

Algorithm 1 Decompress arithmetic coding

procedure decompress(b,N)

u← 0

p← 1

x← []
for n = 1, . . . ,N do

for y ∈ A do
U← u+ pQ(y|x1, . . . , xn−1)
V ← u+ pR(y|x1, . . . , xn−1)
if 0.b ∈ [U,V) then

x← x+ [y]
u← U

p← V −U

end if
end for

end for
return x

end procedure
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