
Introduction to Information Theory, Fall 2019

Practice problem set #2

You do not have to hand in these exercises, they are for your practice only.

1. Entropy, essential bit content Let X be a random variable with probability distribution

P with five possible outcomes A, B, C, D and E and probabilities P(A) = 1/2, P(B) = 1/8,

P(C) = 1/4, P(D) = 1/16, P(E) = 1/16.

(a) What is the entropy H(X)?
(b) Sketch Hδ(X) as a function of δ.

2. Enumeration of binary sequences In the lecture a universal compression scheme was

discussed. For this week’s homework you will have to implement this scheme, and to help

you we will work out an algorithm for the compressor and the decoder in this exercise. Let

AN be the set of all bitstrings of zeros and ones of length N and let B(N, k) ⊂ AN be set of

all strings xN of length N with k ones. We will then order these sets in an appropriate way,

and given xN we compress by sending over k, the number of ones in xN, and its index in

B(N, k). For the decoder, we just read out the appropriate element from B(N, k). In this

exercise we will derive a recursive algorithm for enumerating strings in B(N, k) (notice that
these sets will be exponentially large in N so we should not just enumerate over them!). We

will use the lexicographic order (denoted6
lex

), formally defined as follows: Given bitstrings

x and y, we have that x 6
lex
y if either x = y or xi < yi for the smallest i such that xi 6= yi.

For example, 001 6
lex
010 6

lex
110.

(a) To get some intuition, write down B(4, 2) in lexicographically increasing order.

(b) Argue that

B(N, k) =


{0...0} if k = 0,

{1...1} if k = N,

{0x | x ∈ B(N− 1, k)} ∪ {1x | x ∈ B(N− 1, k− 1)} otherwise.

(c) We want to find an algorithm that assigns to a bitstring in B(N, k) its index in the

lexicographical order on B(N, k). Argue that Algorithm 1 gives the right result (notice

that we start counting at 0, and we use the convention that

(
N
k

)
= 0 if k > N).

(d) For the decoding, we need an algorithm that finds the bitstring from k and its index in

B(N, k). Argue that Algorithm 2 gives the right answer.

1

Algorithm 1 Calculate index of a bitstring x

procedure index(x)

N← length(x)

k← number_of_ones(x)

if N = 0 then
return 0

end if
if x[0] = 0 then

return index(x[1...])
else

return
(
N−1
k

)
+index(x[1...])

end if
end procedure

Algorithm 2 Calculate string from length N, number of ones k and indexm

procedure string(N, k,m)

if N = 0 then
return Empty string

end if
ifm <

(
N−1
k

)
then

return append(0, string(N− 1, k,m))

else
return append(1, string(N− 1, k− 1,m−

(
n−1
k

)
))

end if
end procedure

2

