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[1]: %matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from scipy.special import binom, entr

In this notebook we’ll try to get some intuition for lossy compression and Shannon’s theorem
for a sequence of Bernoulli(p) random variables. The entropy of such a random variable as a
function of p is given as:

[2]: def h(p):
"""Return binary Shannon entropy of distribution {p,1-p}."""
return (entr(p) + entr(1 - p)) / np.log(2)

ps = np.linspace(0, 1)
plt.plot(ps, h(ps), label='h(p)')
plt.xlabel('p')
plt.legend()
plt.show()
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So, for p = 0 or p = 1 the entropy is 0, and there is no information (in the sense that there is
only one possible outcome, so we don’t have to send any bits to communicate the information).
For p = 1

2 the entropy is maximal and given by 1, which means by Shannon’s theorem that there
is no way to compress this source (it has no redundancy).

We will consider a sequence of Bernoulli random variables, and we will see what happens if
we try to compress using typical sets. First of all, notice that the probability of a sequence only
depends on the number k of ones in the sequence. We want to see that the probability of k peaks
strongly around k ≈ p · n. Let

d(k) =
(

n
k

)
, r(k) =

1
n

log
(

n
k

)
, q(k) =

(
n
k

)
pk(1 − p)n−k

so q(k) is the probability of having k ones. We plot these functions for k ∈ {0, 1, . . . , n} and
n = 100, 1000 for p = 0.1.

[3]: p = 0.1

for n in [100, 1000]:
ks = np.arange(n + 1)
ds = binom(n, ks)
rs = np.log2(ds) / n
qs = ds * p**ks * (1 - p)**(n - ks)

fig, axes = plt.subplots(ncols=3, figsize=(12.8, 4.8))
fig.suptitle('n = %s' % n)
axes[0].plot(ks, ds, label='d(k)')
axes[0].set_xlabel('k')
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axes[0].legend()

axes[1].plot(ks, rs, label='r(k)')
axes[1].plot(ks, h(ks / n), '--', label='h(k/n)')
axes[1].set_xlabel('k')
axes[1].legend()

axes[2].plot(ks, qs, label='q(k)')
axes[2].vlines(

p * n, 0, np.max(qs), linestyle='dotted', label='$k = n \cdot p$')
axes[2].set_xlabel('k')
axes[2].legend()
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We see two important features: - The sets of sequences of length n with fixed number k of
ones have cardinality 2n(h(k/n)±o(1)) (since r(k) is approximately h(k/n)). - The probability that a
random sequence has k ones is peaked about k/n ≈ p.

The typical set will consist of sequences which have k ones such that k/n is close to p. From
the above pictures we have good hope that the probability of being in such a set is large (for large
n), while the size of such sets is significantly smaller than the set of all sequences (2n(h(k/n)±o(1))

versus 2n). To verify this we will plot the logarithm of the size of the typical set and the probability
of being in the typical set

r(n) =
1
n

log|Tn,ε|p(n) = Pr[Xn ∈ Tn,ε]

for n ∈ {1, . . . , 1000} and ε = 0.1, 0.01.
First compute the data:

[4]: epsilons = [0.1, 0.05, 0.01]
ns = np.arange(1, 1001, 10)
rs = {}
ps = {}

ent = h(p)
for eps in epsilons:

sizes = []
probs = []
for n in ns:

# compute size and probability of typical subset
size = 0
prob = 0
for k in range(1, n + 1):

q = p**k * (1 - p)**(n - k)
is_typical = 2**(-n * (ent + eps)) <= q <= 2**(-n * (ent - eps))
d = binom(n, k)
if is_typical:

size += d
prob += d * q

sizes.append(size)
probs.append(prob)

# store r(n) and p(n) in dictionary
with np.errstate(divide='ignore'):

rs[eps] = np.log2(sizes) / ns
ps[eps] = probs

Plot the functions:
[5]: fig, axes = plt.subplots(ncols=2, figsize=(12.8, 4.8))

axes[0].set_xlabel('n')
axes[0].set_ylabel('r(n)')
axes[1].set_xlabel('n')
axes[1].set_ylabel('p(n)')
axes[1].yaxis.tick_right()
axes[1].yaxis.set_label_position('right')
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for eps in rs:
axes[0].plot(ns, rs[eps], '+', label='eps = %s' % eps)
axes[0].hlines(

h(p) + eps, 1, 1000, linestyle='dotted', label='h(p) + %s' % eps)
axes[1].plot(ns, ps[eps], '+', label='eps = %s' % eps)

axes[0].legend()
axes[1].legend()
fig.tight_layout()

We see that r(n) converges to h(p) + ε and p(n) converges to 1, as one would hope. Remark
though that the convergence of p(n) to 1 is very slow, especially if ε is small! Notice that since
|Tn,ε| ≤ 2n(h(p)+ε) we need ⌈n(h(p) + ε)⌉ bits to send over elements of Tn,ε, so we can send infor-
mation at rate h(p) + ε with error probability as shown in the right hand figure. As you would
expect, higher rates come with lower error probabilities!

However, we do not necessarily need to use the typical sets Tn,ε for compression. An opti-
mal choice of set Sδ to compress to with error δ is found by ordering all outcomes by probability,
and then leaving out the outcomes with the smallest probabilities, until taking out one more out-
come would lead to an error probability larger than δ. The essential bit content is then given by
Hδ(Xn) = log(|Sδ|. In our case, of a Bernoulli random variable with p = 0.1, the least likely se-
quence is the one which only has ones (it has probability 0.1n). The next least likely sequences
are the ones which have only a single zero. These have probability 0.9(0.1)n−1 and there are n of
them.

In the following figure we will completely enumerate all outcomes for n = 10, and compute
Hδ(Xn) and plot 1

n Hδ(Xn) against δ. Next we will also do the same for larger n, but only compute
the dependence of δ on k and interpolate (the set of all sequences is too large to enumerate over
and we won’t see the difference in the picture anyway). This reproduces figure 4.9 in MacKay.
Make sure you understand the meaning of what is plotted (but don’t worry about the code)!

[6]: p = 0.1
plt.hlines(h(p), 0, 1, linestyle='dotted', label='h(p)')
# We completely enumerate for n = 10
n = 10
prob = np.zeros(2 ** n)
hs = np.log2(np.arange(1, 2 ** n + 1)) / n
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i = 0
for k in np.arange(n + 1):

for m in range(int(binom(n, k))):
prob[i] = p**k * (1 - p)**(n - k)
i += 1

deltas = 1 - np.cumsum(prob)
plt.step(deltas, hs, label=n)

# For larger n we interpolate by only looking at jumps in k
for n in [210, 410, 610, 810, 1010]:

ks = np.arange(n + 1)
ds = binom(n, ks)
qs = ds * p**ks * (1 - p)**(n - ks)
deltas = 1 - np.cumsum(qs)
hs = np.log2(np.cumsum(ds))/n
plt.plot(deltas, hs, linestyle='dotted', label=n)
plt.xlabel(r'$\delta$')
plt.ylabel(r'$\frac{1}{n}H_{\delta}(X^n)$')
plt.legend()

We see that for large n the essential bit content satisfies 1
n Hδ(Xn) ≈ h(p) for δ away from 0

and 1 (and the larger n the better the approximation). This is precisely what Shannon’s source
coding theorem states! It means that for large n we can compress at rate approximately h(p) for
any nonzero allowed error. A nice exercise would be to make a version of this picture using the
typical sets rather than the optimal sets and see how they differ!
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